结构化系统最小代价稀疏输入选择的线性规划方法

Yuan Zhang, Yuanqing Xia, Yufeng Zhan
{"title":"结构化系统最小代价稀疏输入选择的线性规划方法","authors":"Yuan Zhang, Yuanqing Xia, Yufeng Zhan","doi":"10.23919/ACC53348.2022.9867459","DOIUrl":null,"url":null,"abstract":"In this paper, we consider three related cost-sparsity induced optimal input selection problems for structural controllability using a unifying linear programming (LP) framework. More precisely, given an autonomous system and a constrained input configuration where whether an input can directly actuate a state variable, as well as the corresponding (possibly different) cost, is prescribed, the problems are, respectively, selecting the minimum number of input links, selecting the minimum cost of input links, and selecting the input links with the cost as small as possible while their cardinality is not exceeding a prescribed number, all to ensure structural controllability of the resulting systems. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the first and second problems are polynomially solvable by some graphtheoretic algorithms, while the general nontrivial constrained case is largely unexploited. In this paper, we formulate these problems as equivalent integer linear programming (ILP) problems. Under a weaker constraint on the prescribed input configurations than most of the currently known ones with which the first two problems are reportedly polynomially solvable, we show these ILPs can be solved by simply removing the integer constraints and solving the corresponding LP relaxations, thus providing a unifying algebraic method, rather than graph-theoretic, for these problems with polynomial time complexity. The key to our approach is the observation that the respective constraint matrices of the ILPs are totally unimodular.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Linear Programming Approach to the Minimum Cost Sparsest Input Selection for Structured Systems\",\"authors\":\"Yuan Zhang, Yuanqing Xia, Yufeng Zhan\",\"doi\":\"10.23919/ACC53348.2022.9867459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider three related cost-sparsity induced optimal input selection problems for structural controllability using a unifying linear programming (LP) framework. More precisely, given an autonomous system and a constrained input configuration where whether an input can directly actuate a state variable, as well as the corresponding (possibly different) cost, is prescribed, the problems are, respectively, selecting the minimum number of input links, selecting the minimum cost of input links, and selecting the input links with the cost as small as possible while their cardinality is not exceeding a prescribed number, all to ensure structural controllability of the resulting systems. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the first and second problems are polynomially solvable by some graphtheoretic algorithms, while the general nontrivial constrained case is largely unexploited. In this paper, we formulate these problems as equivalent integer linear programming (ILP) problems. Under a weaker constraint on the prescribed input configurations than most of the currently known ones with which the first two problems are reportedly polynomially solvable, we show these ILPs can be solved by simply removing the integer constraints and solving the corresponding LP relaxations, thus providing a unifying algebraic method, rather than graph-theoretic, for these problems with polynomial time complexity. The key to our approach is the observation that the respective constraint matrices of the ILPs are totally unimodular.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文利用统一的线性规划(LP)框架,研究了三个相关的成本稀疏性诱导的结构可控性最优输入选择问题。更准确地说,给定一个自治系统和一个约束的输入配置,其中一个输入是否可以直接驱动一个状态变量,以及相应的(可能不同的)代价是规定的,问题分别是选择最小的输入链路数量,选择最小的输入链路代价,选择代价尽可能小的输入链路,同时它们的基数不超过规定的数量。所有这些都是为了确保最终系统的结构可控性。目前的研究表明,在专用输入情况下(即每个输入只能驱动一个状态变量),一些图论算法可以多项式地解决第一个和第二个问题,而一般的非平凡约束情况在很大程度上没有得到开发。本文将这些问题表述为等效整数线性规划(ILP)问题。在较弱的输入配置约束下,我们证明了这些ilp可以通过简单地去除整数约束并求解相应的LP松弛来解决,从而为这些具有多项式时间复杂度的问题提供了一种统一的代数方法,而不是图论方法。我们方法的关键是观察到ilp各自的约束矩阵是完全非模的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Linear Programming Approach to the Minimum Cost Sparsest Input Selection for Structured Systems
In this paper, we consider three related cost-sparsity induced optimal input selection problems for structural controllability using a unifying linear programming (LP) framework. More precisely, given an autonomous system and a constrained input configuration where whether an input can directly actuate a state variable, as well as the corresponding (possibly different) cost, is prescribed, the problems are, respectively, selecting the minimum number of input links, selecting the minimum cost of input links, and selecting the input links with the cost as small as possible while their cardinality is not exceeding a prescribed number, all to ensure structural controllability of the resulting systems. Current studies show that in the dedicated input case (i.e., each input can actuate only a state variable), the first and second problems are polynomially solvable by some graphtheoretic algorithms, while the general nontrivial constrained case is largely unexploited. In this paper, we formulate these problems as equivalent integer linear programming (ILP) problems. Under a weaker constraint on the prescribed input configurations than most of the currently known ones with which the first two problems are reportedly polynomially solvable, we show these ILPs can be solved by simply removing the integer constraints and solving the corresponding LP relaxations, thus providing a unifying algebraic method, rather than graph-theoretic, for these problems with polynomial time complexity. The key to our approach is the observation that the respective constraint matrices of the ILPs are totally unimodular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1