MPI程序中死锁检测的预测分析

Yu Huang, B. Ogles, Eric Mercer
{"title":"MPI程序中死锁检测的预测分析","authors":"Yu Huang, B. Ogles, Eric Mercer","doi":"10.1145/3324884.3416588","DOIUrl":null,"url":null,"abstract":"A common problem in MPI programs is deadlock: when two or more processes are blocked indefinitely due to a circular communication dependency. Automatically detecting deadlock is difficult due to its schedule-dependent nature. This paper presents a predictive analysis for single-path MPI programs that observes a single program execution and then determines whether any other feasible schedule of the program can lead to a deadlock. The analysis works by identifying problematic communication patterns in a dependency graph to form a set of deadlock candidates. The deadlock candidates are filtered by an abstract machine and ultimately tested for reachability by an SMT solver with an efficient encoding for deadlock. This approach quickly yields a set of high probability deadlock candidates useful for reasoning about complex codes and yields higher performance overall in many cases compared to other state-of-the-art analyses. The analysis is sound and complete for single-path MPI programs on a given input.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Predictive Analysis for Detecting Deadlock in MPI Programs\",\"authors\":\"Yu Huang, B. Ogles, Eric Mercer\",\"doi\":\"10.1145/3324884.3416588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common problem in MPI programs is deadlock: when two or more processes are blocked indefinitely due to a circular communication dependency. Automatically detecting deadlock is difficult due to its schedule-dependent nature. This paper presents a predictive analysis for single-path MPI programs that observes a single program execution and then determines whether any other feasible schedule of the program can lead to a deadlock. The analysis works by identifying problematic communication patterns in a dependency graph to form a set of deadlock candidates. The deadlock candidates are filtered by an abstract machine and ultimately tested for reachability by an SMT solver with an efficient encoding for deadlock. This approach quickly yields a set of high probability deadlock candidates useful for reasoning about complex codes and yields higher performance overall in many cases compared to other state-of-the-art analyses. The analysis is sound and complete for single-path MPI programs on a given input.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3416588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

MPI程序中的一个常见问题是死锁:当两个或多个进程由于循环通信依赖而无限期阻塞时。自动检测死锁是困难的,因为它依赖于调度的性质。本文提出了一种单路径MPI程序的预测分析方法,它观察单个程序的执行情况,然后确定程序的任何其他可行的调度是否会导致死锁。分析通过在依赖关系图中识别有问题的通信模式来形成一组死锁候选者。死锁候选者由抽象机器过滤,并最终由具有有效死锁编码的SMT求解器测试可达性。这种方法可以快速生成一组高概率死锁候选者,这对于推理复杂代码非常有用,并且在许多情况下,与其他最先进的分析相比,可以产生更高的总体性能。对于给定输入的单路径MPI程序,分析是健全和完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Predictive Analysis for Detecting Deadlock in MPI Programs
A common problem in MPI programs is deadlock: when two or more processes are blocked indefinitely due to a circular communication dependency. Automatically detecting deadlock is difficult due to its schedule-dependent nature. This paper presents a predictive analysis for single-path MPI programs that observes a single program execution and then determines whether any other feasible schedule of the program can lead to a deadlock. The analysis works by identifying problematic communication patterns in a dependency graph to form a set of deadlock candidates. The deadlock candidates are filtered by an abstract machine and ultimately tested for reachability by an SMT solver with an efficient encoding for deadlock. This approach quickly yields a set of high probability deadlock candidates useful for reasoning about complex codes and yields higher performance overall in many cases compared to other state-of-the-art analyses. The analysis is sound and complete for single-path MPI programs on a given input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1