{"title":"Multi-Genomic算法","authors":"Mathias Ngo, R. Labayrade","doi":"10.1109/MCDM.2014.7007187","DOIUrl":null,"url":null,"abstract":"The first step of any optimization process consists in choosing the Decision Variables (DV) and its relationships that model the problem, system or object to optimize. Many problems cannot be represented by a unique, exhaustive model which would ensure a global best result: in those cases, the model (DV and relationships) choice matters on the quality of the results.","PeriodicalId":335170,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Genomic Algorithms\",\"authors\":\"Mathias Ngo, R. Labayrade\",\"doi\":\"10.1109/MCDM.2014.7007187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first step of any optimization process consists in choosing the Decision Variables (DV) and its relationships that model the problem, system or object to optimize. Many problems cannot be represented by a unique, exhaustive model which would ensure a global best result: in those cases, the model (DV and relationships) choice matters on the quality of the results.\",\"PeriodicalId\":335170,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2014.7007187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2014.7007187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

任何优化过程的第一步都包括选择决策变量(DV)及其关系,这些变量对要优化的问题、系统或对象进行建模。许多问题无法用一个确保全局最佳结果的独特的、详尽的模型来表示:在这些情况下,模型(DV和关系)的选择关系到结果的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Genomic Algorithms
The first step of any optimization process consists in choosing the Decision Variables (DV) and its relationships that model the problem, system or object to optimize. Many problems cannot be represented by a unique, exhaustive model which would ensure a global best result: in those cases, the model (DV and relationships) choice matters on the quality of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An extended bilevel programming model and its kth-best algorithm for dynamic decision making in emergency situations A bottom-up implementation of Path-Relinking for Phylogenetic reconstruction applied to Maximum Parsimony Visualization and classification of protein secondary structures using Self-Organizing Maps Gene interaction networks boost genetic algorithm performance in biomarker discovery Partially Optimized Cyclic Shift Crossover for Multi-Objective Genetic Algorithms for the multi-objective Vehicle Routing Problem with time-windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1