{"title":"陀螺编译器:用于MEMS陀螺仪设计的软IP模型综合与分析框架","authors":"S. Jairam, N. Bhat","doi":"10.1109/VLSI.2008.10","DOIUrl":null,"url":null,"abstract":"A model to create a simulation and a synthesis framework for design of gyroscopes is proposed. The main motivation is to have a framework for developing gyroscope models in the form of soft intellectual properties (IPs) for their subsequent integration into mainstream VLSI systems. Synthesis targetting different performance classes of gyros is based on a simple table look-up. The next level of model refinement involving optimization of the different physical aspects of the gyro such as its shape is based on statistical design of experiments (DoE). Both FEM and Simulink based models have been used to build a custom DoE framework to estimate the parameters related to a desired gyro structure. A simple gyroscope structure is modeled and analysed with both FEM and Simulink based models. It is shown that DoE based framework can capture the parameters of a gyroscope structure, accurately and that it can be easily integrated with system level synthesis tools.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GyroCompiler: A Soft IP Model Synthesis and Analysis Framework for Design of MEMS Based Gyroscopes\",\"authors\":\"S. Jairam, N. Bhat\",\"doi\":\"10.1109/VLSI.2008.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model to create a simulation and a synthesis framework for design of gyroscopes is proposed. The main motivation is to have a framework for developing gyroscope models in the form of soft intellectual properties (IPs) for their subsequent integration into mainstream VLSI systems. Synthesis targetting different performance classes of gyros is based on a simple table look-up. The next level of model refinement involving optimization of the different physical aspects of the gyro such as its shape is based on statistical design of experiments (DoE). Both FEM and Simulink based models have been used to build a custom DoE framework to estimate the parameters related to a desired gyro structure. A simple gyroscope structure is modeled and analysed with both FEM and Simulink based models. It is shown that DoE based framework can capture the parameters of a gyroscope structure, accurately and that it can be easily integrated with system level synthesis tools.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GyroCompiler: A Soft IP Model Synthesis and Analysis Framework for Design of MEMS Based Gyroscopes
A model to create a simulation and a synthesis framework for design of gyroscopes is proposed. The main motivation is to have a framework for developing gyroscope models in the form of soft intellectual properties (IPs) for their subsequent integration into mainstream VLSI systems. Synthesis targetting different performance classes of gyros is based on a simple table look-up. The next level of model refinement involving optimization of the different physical aspects of the gyro such as its shape is based on statistical design of experiments (DoE). Both FEM and Simulink based models have been used to build a custom DoE framework to estimate the parameters related to a desired gyro structure. A simple gyroscope structure is modeled and analysed with both FEM and Simulink based models. It is shown that DoE based framework can capture the parameters of a gyroscope structure, accurately and that it can be easily integrated with system level synthesis tools.