植被与农作物高光谱遥感研究进展

P. Thenkabail, M. Gumma, P. Teluguntla, Irshad A. Mohammed
{"title":"植被与农作物高光谱遥感研究进展","authors":"P. Thenkabail, M. Gumma, P. Teluguntla, Irshad A. Mohammed","doi":"10.1201/9781315164151-1","DOIUrl":null,"url":null,"abstract":"There are now over 40 years of research in hyperspectral remote sensing (or \nimaging spectroscopy) of vegetation and agricultural crops (Thenkabail et \nal., 2011a). Even though much of the early research in hyperspectral remote \nsensing was overwhelmingly focused on minerals, now there is substantial \nliterature in characterization, monitoring, modeling, and mapping of vegetation \nand agricultural crops using ground-based, platform-mounted, airborne, \nUnmanned Aerial Vehicle (UAV) mounted, and spaceborne hyperspectral \nremote sensing (Swatantran et al., 2011; Atzberger, 2013; Middleton et al., 2013; \nSchlemmer et al., 2013; Thenkabail et al., 2013; Udelhoven et al., 2013; Zhang \net al., 2013). The state-of-the-art in hyperspectral remote sensing of vegetation \nand agriculture shows significant enhancement over conventional remote \nsensing, leading to improved and targeted modeling and mapping of specific \nagricultural characteristics such as: (a) biophysical and biochemical quantities \n(Galvao, 2011; Clark and Roberts, 2012), (b) crop type\\species (Thenkabail \net al., 2013), (c) management and stress factors such as nitrogen deficiency, \nmoisture deficiency, or drought conditions (Delalieux et al., 2009; Gitelson, \n2013; Slonecker et al., 2013), and (d) water use and water productivities \n(Thenkabail et al., 2013). At the same time, overcoming Hughes’ phenomenon \nor curse of dimensionality of data and data redundancy (Plaza et al., 2009) \nis of great importance to make rapid advances in a much wider utilization of \nhyperspectral data. This is because, for a specific application, a large number \nof hyperspectral bands are redundant (Thenkabail et al., 2013). Selecting the \nrelevant bands will require the use of data mining techniques (Burger and \nGowen, 2011) to focus on utilizing the optimal or best ones to maximize the \nefficiency of data use and reduce unnecessary computing...","PeriodicalId":304529,"journal":{"name":"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Crops\",\"authors\":\"P. Thenkabail, M. Gumma, P. Teluguntla, Irshad A. Mohammed\",\"doi\":\"10.1201/9781315164151-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are now over 40 years of research in hyperspectral remote sensing (or \\nimaging spectroscopy) of vegetation and agricultural crops (Thenkabail et \\nal., 2011a). Even though much of the early research in hyperspectral remote \\nsensing was overwhelmingly focused on minerals, now there is substantial \\nliterature in characterization, monitoring, modeling, and mapping of vegetation \\nand agricultural crops using ground-based, platform-mounted, airborne, \\nUnmanned Aerial Vehicle (UAV) mounted, and spaceborne hyperspectral \\nremote sensing (Swatantran et al., 2011; Atzberger, 2013; Middleton et al., 2013; \\nSchlemmer et al., 2013; Thenkabail et al., 2013; Udelhoven et al., 2013; Zhang \\net al., 2013). The state-of-the-art in hyperspectral remote sensing of vegetation \\nand agriculture shows significant enhancement over conventional remote \\nsensing, leading to improved and targeted modeling and mapping of specific \\nagricultural characteristics such as: (a) biophysical and biochemical quantities \\n(Galvao, 2011; Clark and Roberts, 2012), (b) crop type\\\\species (Thenkabail \\net al., 2013), (c) management and stress factors such as nitrogen deficiency, \\nmoisture deficiency, or drought conditions (Delalieux et al., 2009; Gitelson, \\n2013; Slonecker et al., 2013), and (d) water use and water productivities \\n(Thenkabail et al., 2013). At the same time, overcoming Hughes’ phenomenon \\nor curse of dimensionality of data and data redundancy (Plaza et al., 2009) \\nis of great importance to make rapid advances in a much wider utilization of \\nhyperspectral data. This is because, for a specific application, a large number \\nof hyperspectral bands are redundant (Thenkabail et al., 2013). Selecting the \\nrelevant bands will require the use of data mining techniques (Burger and \\nGowen, 2011) to focus on utilizing the optimal or best ones to maximize the \\nefficiency of data use and reduce unnecessary computing...\",\"PeriodicalId\":304529,\"journal\":{\"name\":\"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315164151-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315164151-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

目前,对植被和农作物的高光谱遥感(或成像光谱)研究已有40多年的历史(Thenkabail et al., 2011)。尽管高光谱遥感的早期研究绝大多数集中在矿物上,但现在有大量文献利用地面、平台、机载、无人机(UAV)和星载高光谱遥感对植被和农作物进行表征、监测、建模和制图(Swatantran等人,2011;Atzberger, 2013;Middleton et al., 2013;Schlemmer et al., 2013;Thenkabail et al., 2013;Udelhoven et al., 2013;Zhang等人,2013)。植被和农业高光谱遥感的最新技术比传统遥感有了显著提高,从而改进了特定农业特征的有针对性的建模和制图,例如:(a)生物物理和生化数量(Galvao, 2011;Clark和Roberts, 2012), (b)作物类型和品种(Thenkabail等人,2013),(c)管理和胁迫因素,如缺氮、缺水或干旱条件(Delalieux等人,2009;Gitelson, 2013;Slonecker et al., 2013)和(d)水资源利用和水生产力(Thenkabail et al., 2013)。同时,克服Hughes的数据维数和数据冗余现象或诅咒(Plaza et al., 2009)对于快速推进高光谱数据的更广泛利用具有重要意义。这是因为,对于特定的应用,大量的高光谱波段是冗余的(Thenkabail et al., 2013)。选择相关波段将需要使用数据挖掘技术(Burger和Gowen, 2011),专注于利用最优或最好的数据来最大化数据使用效率并减少不必要的计算……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Crops
There are now over 40 years of research in hyperspectral remote sensing (or imaging spectroscopy) of vegetation and agricultural crops (Thenkabail et al., 2011a). Even though much of the early research in hyperspectral remote sensing was overwhelmingly focused on minerals, now there is substantial literature in characterization, monitoring, modeling, and mapping of vegetation and agricultural crops using ground-based, platform-mounted, airborne, Unmanned Aerial Vehicle (UAV) mounted, and spaceborne hyperspectral remote sensing (Swatantran et al., 2011; Atzberger, 2013; Middleton et al., 2013; Schlemmer et al., 2013; Thenkabail et al., 2013; Udelhoven et al., 2013; Zhang et al., 2013). The state-of-the-art in hyperspectral remote sensing of vegetation and agriculture shows significant enhancement over conventional remote sensing, leading to improved and targeted modeling and mapping of specific agricultural characteristics such as: (a) biophysical and biochemical quantities (Galvao, 2011; Clark and Roberts, 2012), (b) crop type\species (Thenkabail et al., 2013), (c) management and stress factors such as nitrogen deficiency, moisture deficiency, or drought conditions (Delalieux et al., 2009; Gitelson, 2013; Slonecker et al., 2013), and (d) water use and water productivities (Thenkabail et al., 2013). At the same time, overcoming Hughes’ phenomenon or curse of dimensionality of data and data redundancy (Plaza et al., 2009) is of great importance to make rapid advances in a much wider utilization of hyperspectral data. This is because, for a specific application, a large number of hyperspectral bands are redundant (Thenkabail et al., 2013). Selecting the relevant bands will require the use of data mining techniques (Burger and Gowen, 2011) to focus on utilizing the optimal or best ones to maximize the efficiency of data use and reduce unnecessary computing...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Soil Properties Using Reflectance Spectroscopy Integrating Hyperspectral and LiDAR Data in the Study of Vegetation The Use of Hyperspectral Proximal Sensing for Phenotyping of Plant Breeding Trials The Use of Spectral Databases for Remote Sensing of Agricultural Crops Spaceborne Hyperspectral EO-1 Hyperion Data Pre-Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1