基于人工神经网络的道路几何分类

A. Hata, Danilo Habermann, F. Osório, D. Wolf
{"title":"基于人工神经网络的道路几何分类","authors":"A. Hata, Danilo Habermann, F. Osório, D. Wolf","doi":"10.1109/IVS.2014.6856513","DOIUrl":null,"url":null,"abstract":"An autonomous car must have a robust perception system to navigate safely in urban streets. An important issue of environment perception is the road (navigable area) detection and the identification of the road geometry. The road geometry information can be used to determine the vehicle control according to the street and also for topological localization. Existing road geometry identifiers only work with a limited number of classes and, due to the use of cameras, some solutions depend on filters to deal with shadows and light variations. This paper presents a road detector that extracts curb and navigable surface information from a multilayer laser sensor data. The road data was trained with an artificial neural network (ANN) and classified into eight road geometries: straight road, left turn, right turn, left side road, right side road, T intersection, Y intersection and crossroad. The main advantage of our method is its robustness to light variations for detecting distinct roads even in the presence of noisy data thanks to the ANN. In order to determine which road information has the best features for ANN training, three approaches were explored: ANN trained with curb data, ANN trained with surface data and ANN trained with both curb and surface data. Performed experiments resulted in the superiority of the network trained with both curb and surface data, with an accuracy of 0.91799. The trained ANN was validated in different urban scenarios and, evaluating a 1 Km track, we obtained a 94.48% of correct classifications. These results are superior than other works that detect fewer number of road shapes.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Road geometry classification using ANN\",\"authors\":\"A. Hata, Danilo Habermann, F. Osório, D. Wolf\",\"doi\":\"10.1109/IVS.2014.6856513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An autonomous car must have a robust perception system to navigate safely in urban streets. An important issue of environment perception is the road (navigable area) detection and the identification of the road geometry. The road geometry information can be used to determine the vehicle control according to the street and also for topological localization. Existing road geometry identifiers only work with a limited number of classes and, due to the use of cameras, some solutions depend on filters to deal with shadows and light variations. This paper presents a road detector that extracts curb and navigable surface information from a multilayer laser sensor data. The road data was trained with an artificial neural network (ANN) and classified into eight road geometries: straight road, left turn, right turn, left side road, right side road, T intersection, Y intersection and crossroad. The main advantage of our method is its robustness to light variations for detecting distinct roads even in the presence of noisy data thanks to the ANN. In order to determine which road information has the best features for ANN training, three approaches were explored: ANN trained with curb data, ANN trained with surface data and ANN trained with both curb and surface data. Performed experiments resulted in the superiority of the network trained with both curb and surface data, with an accuracy of 0.91799. The trained ANN was validated in different urban scenarios and, evaluating a 1 Km track, we obtained a 94.48% of correct classifications. These results are superior than other works that detect fewer number of road shapes.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

自动驾驶汽车必须拥有强大的感知系统,才能在城市街道上安全行驶。环境感知的一个重要问题是道路(可通航区域)的检测和道路几何形状的识别。道路几何信息可用于根据街道确定车辆控制,也可用于拓扑定位。现有的道路几何标识符仅适用于有限数量的类别,并且由于使用相机,一些解决方案依赖于过滤器来处理阴影和光线变化。本文提出了一种从多层激光传感器数据中提取路缘和可导航路面信息的道路检测器。利用人工神经网络(ANN)对道路数据进行训练,并将其划分为直路、左转弯、右转弯、左侧道路、右侧道路、T路口、Y路口和十字路口等8种道路几何形状。我们的方法的主要优点是它对光变化的鲁棒性,即使在存在噪声数据的情况下也能检测到不同的道路。为了确定哪些道路信息具有最适合人工神经网络训练的特征,我们探索了三种方法:用路缘数据训练的人工神经网络、用路面数据训练的人工神经网络以及同时用路缘和路面数据训练的人工神经网络。实验结果表明,同时训练路边数据和面数据的网络具有优势,准确率为0.91799。训练后的人工神经网络在不同的城市场景中进行了验证,在评估1公里的轨道时,我们获得了94.48%的正确率。这些结果优于其他检测较少数量道路形状的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Road geometry classification using ANN
An autonomous car must have a robust perception system to navigate safely in urban streets. An important issue of environment perception is the road (navigable area) detection and the identification of the road geometry. The road geometry information can be used to determine the vehicle control according to the street and also for topological localization. Existing road geometry identifiers only work with a limited number of classes and, due to the use of cameras, some solutions depend on filters to deal with shadows and light variations. This paper presents a road detector that extracts curb and navigable surface information from a multilayer laser sensor data. The road data was trained with an artificial neural network (ANN) and classified into eight road geometries: straight road, left turn, right turn, left side road, right side road, T intersection, Y intersection and crossroad. The main advantage of our method is its robustness to light variations for detecting distinct roads even in the presence of noisy data thanks to the ANN. In order to determine which road information has the best features for ANN training, three approaches were explored: ANN trained with curb data, ANN trained with surface data and ANN trained with both curb and surface data. Performed experiments resulted in the superiority of the network trained with both curb and surface data, with an accuracy of 0.91799. The trained ANN was validated in different urban scenarios and, evaluating a 1 Km track, we obtained a 94.48% of correct classifications. These results are superior than other works that detect fewer number of road shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPS precise positioning with pseudorange evaluation using 3-dimensional maps Vehicle safety evaluation based on driver drowsiness and distracted and impaired driving performance using evidence theory Concept-aware ensemble system for pedestrian detection Pose detection in truck and trailer combinations for advanced driver assistance systems Environment perception for inner-city driver assistance and highly-automated driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1