数据丢失预防和检测的混合框架

Elisa Costante, D. Fauri, S. Etalle, J. D. Hartog, Nicola Zannone
{"title":"数据丢失预防和检测的混合框架","authors":"Elisa Costante, D. Fauri, S. Etalle, J. D. Hartog, Nicola Zannone","doi":"10.1109/SPW.2016.24","DOIUrl":null,"url":null,"abstract":"Data loss, i.e. the unauthorized/unwanted disclosure of data, is a major threat for modern organizations. Data Loss Protection (DLP) solutions in use nowadays, either employ patterns of known attacks (signature-based) or try to find deviations from normal behavior (anomaly-based). While signature-based solutions provide accurate identification of known attacks and, thus, are suitable for the prevention of these attacks, they cannot cope with unknown attacks, nor with attackers who follow unusual paths (like those known only to insiders) to carry out their attack. On the other hand, anomaly-based solutions can find unknown attacks but typically have a high false positive rate, limiting their applicability to the detection of suspicious activities. In this paper, we propose a hybrid DLP framework that combines signature-based and anomaly-based solutions, enabling both detection and prevention. The framework uses an anomaly-based engine that automatically learns a model of normal user behavior, allowing it to flag when insiders carry out anomalous transactions. Typically, anomaly-based solutions stop at this stage. Our framework goes further in that it exploits an operator's feedback on alerts to automatically build and update signatures of attacks that are used to timely block undesired transactions before they can cause any damage.","PeriodicalId":341207,"journal":{"name":"2016 IEEE Security and Privacy Workshops (SPW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A Hybrid Framework for Data Loss Prevention and Detection\",\"authors\":\"Elisa Costante, D. Fauri, S. Etalle, J. D. Hartog, Nicola Zannone\",\"doi\":\"10.1109/SPW.2016.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data loss, i.e. the unauthorized/unwanted disclosure of data, is a major threat for modern organizations. Data Loss Protection (DLP) solutions in use nowadays, either employ patterns of known attacks (signature-based) or try to find deviations from normal behavior (anomaly-based). While signature-based solutions provide accurate identification of known attacks and, thus, are suitable for the prevention of these attacks, they cannot cope with unknown attacks, nor with attackers who follow unusual paths (like those known only to insiders) to carry out their attack. On the other hand, anomaly-based solutions can find unknown attacks but typically have a high false positive rate, limiting their applicability to the detection of suspicious activities. In this paper, we propose a hybrid DLP framework that combines signature-based and anomaly-based solutions, enabling both detection and prevention. The framework uses an anomaly-based engine that automatically learns a model of normal user behavior, allowing it to flag when insiders carry out anomalous transactions. Typically, anomaly-based solutions stop at this stage. Our framework goes further in that it exploits an operator's feedback on alerts to automatically build and update signatures of attacks that are used to timely block undesired transactions before they can cause any damage.\",\"PeriodicalId\":341207,\"journal\":{\"name\":\"2016 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2016.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

数据丢失,即未经授权/不想要的数据披露,是现代组织的主要威胁。目前使用的数据丢失保护(DLP)解决方案要么采用已知攻击模式(基于签名),要么尝试查找与正常行为的偏差(基于异常)。虽然基于签名的解决方案提供了对已知攻击的准确识别,因此适合于预防这些攻击,但它们无法应对未知攻击,也无法应对遵循异常路径(例如只有内部人员知道的路径)进行攻击的攻击者。另一方面,基于异常的解决方案可以发现未知攻击,但通常具有很高的假阳性率,限制了它们对可疑活动检测的适用性。在本文中,我们提出了一个混合DLP框架,结合了基于签名和基于异常的解决方案,实现了检测和预防。该框架使用基于异常的引擎,自动学习正常用户行为的模型,允许它在内部人员执行异常事务时进行标记。通常,基于异常的解决方案在此阶段停止。我们的框架更进一步,它利用操作员对警报的反馈来自动构建和更新攻击签名,用于及时阻止不希望的交易,以免造成任何损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Framework for Data Loss Prevention and Detection
Data loss, i.e. the unauthorized/unwanted disclosure of data, is a major threat for modern organizations. Data Loss Protection (DLP) solutions in use nowadays, either employ patterns of known attacks (signature-based) or try to find deviations from normal behavior (anomaly-based). While signature-based solutions provide accurate identification of known attacks and, thus, are suitable for the prevention of these attacks, they cannot cope with unknown attacks, nor with attackers who follow unusual paths (like those known only to insiders) to carry out their attack. On the other hand, anomaly-based solutions can find unknown attacks but typically have a high false positive rate, limiting their applicability to the detection of suspicious activities. In this paper, we propose a hybrid DLP framework that combines signature-based and anomaly-based solutions, enabling both detection and prevention. The framework uses an anomaly-based engine that automatically learns a model of normal user behavior, allowing it to flag when insiders carry out anomalous transactions. Typically, anomaly-based solutions stop at this stage. Our framework goes further in that it exploits an operator's feedback on alerts to automatically build and update signatures of attacks that are used to timely block undesired transactions before they can cause any damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Semi-Automated Methodology for Extracting Access Control Rules from the European Data Protection Directive A Critical Analysis of Privacy Design Strategies At Your Fingertips: Considering Finger Distinctness in Continuous Touch-Based Authentication for Mobile Devices Investigating Airplane Safety and Security Against Insider Threats Using Logical Modeling A Model-Based Approach to Predicting the Performance of Insider Threat Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1