不同噪声条件下重采样方法对FastSLAM性能的影响

Serhat Karaçam, T. S. Navruz
{"title":"不同噪声条件下重采样方法对FastSLAM性能的影响","authors":"Serhat Karaçam, T. S. Navruz","doi":"10.1109/SIU55565.2022.9864934","DOIUrl":null,"url":null,"abstract":"In this study, variation of estimation errors of resampling methods which is one of the most important steps of FastSLAM algorithm, in different process and measurement noise values under different particle numbers is examined. It is seen that variation of process noise affected error values more than variation of measurement noise for all resampling methods, and Metropolis resampling is the method least affected by variation of measurement noise. It has been determined that resampling method that provides the closest error value to the correct position changes according to the noise conditions in which the system operates.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Resampling Methods to Performance of FastSLAM Under Different Noise Conditions\",\"authors\":\"Serhat Karaçam, T. S. Navruz\",\"doi\":\"10.1109/SIU55565.2022.9864934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, variation of estimation errors of resampling methods which is one of the most important steps of FastSLAM algorithm, in different process and measurement noise values under different particle numbers is examined. It is seen that variation of process noise affected error values more than variation of measurement noise for all resampling methods, and Metropolis resampling is the method least affected by variation of measurement noise. It has been determined that resampling method that provides the closest error value to the correct position changes according to the noise conditions in which the system operates.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了FastSLAM算法中最重要的步骤之一重采样方法的估计误差在不同过程和不同粒子数下测量噪声值下的变化。结果表明,在所有重采样方法中,过程噪声的变化对误差值的影响大于测量噪声的变化,而Metropolis重采样是受测量噪声影响最小的方法。已经确定,根据系统运行的噪声条件,提供最接近正确位置误差值的重采样方法会发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Resampling Methods to Performance of FastSLAM Under Different Noise Conditions
In this study, variation of estimation errors of resampling methods which is one of the most important steps of FastSLAM algorithm, in different process and measurement noise values under different particle numbers is examined. It is seen that variation of process noise affected error values more than variation of measurement noise for all resampling methods, and Metropolis resampling is the method least affected by variation of measurement noise. It has been determined that resampling method that provides the closest error value to the correct position changes according to the noise conditions in which the system operates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1