用实际数据验证基于随机过程的需求预测方法

Y. Zheng, H. Suito, H. Kawarada
{"title":"用实际数据验证基于随机过程的需求预测方法","authors":"Y. Zheng, H. Suito, H. Kawarada","doi":"10.1515/jnum.2010.007","DOIUrl":null,"url":null,"abstract":"Abstract Demand-forecasting problems frequently arise in logistics and supply chain management. The Newsboy problem is one such problem. In this paper, we present an improved solution method by application of the Black–Scholes model incorporating a stochastic process used in financial engineering for option pricing. The proposed model is shown to be effective through numerical experiments using real-world data.","PeriodicalId":342521,"journal":{"name":"J. Num. Math.","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a demand forecasting method based on a stochastic process using real-world data\",\"authors\":\"Y. Zheng, H. Suito, H. Kawarada\",\"doi\":\"10.1515/jnum.2010.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Demand-forecasting problems frequently arise in logistics and supply chain management. The Newsboy problem is one such problem. In this paper, we present an improved solution method by application of the Black–Scholes model incorporating a stochastic process used in financial engineering for option pricing. The proposed model is shown to be effective through numerical experiments using real-world data.\",\"PeriodicalId\":342521,\"journal\":{\"name\":\"J. Num. Math.\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Num. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jnum.2010.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Num. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jnum.2010.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

需求预测问题是物流和供应链管理中经常出现的问题。报童问题就是这样一个问题。本文将Black-Scholes模型应用于金融工程中期权定价的随机过程,提出了一种改进的求解方法。通过实际数据的数值实验证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation of a demand forecasting method based on a stochastic process using real-world data
Abstract Demand-forecasting problems frequently arise in logistics and supply chain management. The Newsboy problem is one such problem. In this paper, we present an improved solution method by application of the Black–Scholes model incorporating a stochastic process used in financial engineering for option pricing. The proposed model is shown to be effective through numerical experiments using real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem A class of hybrid linear multistep methods with A(ɑ)-stability properties for stiff IVPs in ODEs High performance domain decomposition methods on massively parallel architectures with freefem++ New development in freefem++ Angles between subspaces and their tangents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1