一种改进的动态功能连接和深度神经网络模型用于自闭症谱系障碍分类

Ming Li, Shanshan Tu, S. Rehman, Yong Jie Yang
{"title":"一种改进的动态功能连接和深度神经网络模型用于自闭症谱系障碍分类","authors":"Ming Li, Shanshan Tu, S. Rehman, Yong Jie Yang","doi":"10.1145/3556677.3556694","DOIUrl":null,"url":null,"abstract":"Brain disorders such as autism spectrum disorder (ASD) is still difficult to diagnose. In the recent years, different novel deep learning algorithms have been applied to detect ASD. Most studies use the functional connectivity (FC) pattern to represent the brain activities. However, it has been investigated that dynamic functional connectivity (dFC) which represent more features than FC can characterize the intrinsic brain organization changes over time. The goal of this paper is to determine that dFC features are more successful than FC features in the classification of ASD using deep learning. In this paper, we propose a classification model using dFC and deep neural network. Firstly, we used windowed k-means (WKM) approach to compute the sub-state of the brain and extract the main features of the functional magnetic resonance imaging(fMRI). Then, two stacked denoising autoencoders were applied to extract the features and reduce the dimension. At last, the MLP was utilized to complete the classification task and do fine-tuning based on the autoencoder encoders weights. The experiments were carried out on the Autism Brain Imaging Data Exchange (ABIDE) datasets. Result shows that we acquired a mean accuracy of 68.51%. Overall, our proposed classification is effective and provide evidence that dFC contains more brain states features.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved dynamic functional connectivity and deep neural network model for Autism Spectrum Disorder Classification\",\"authors\":\"Ming Li, Shanshan Tu, S. Rehman, Yong Jie Yang\",\"doi\":\"10.1145/3556677.3556694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain disorders such as autism spectrum disorder (ASD) is still difficult to diagnose. In the recent years, different novel deep learning algorithms have been applied to detect ASD. Most studies use the functional connectivity (FC) pattern to represent the brain activities. However, it has been investigated that dynamic functional connectivity (dFC) which represent more features than FC can characterize the intrinsic brain organization changes over time. The goal of this paper is to determine that dFC features are more successful than FC features in the classification of ASD using deep learning. In this paper, we propose a classification model using dFC and deep neural network. Firstly, we used windowed k-means (WKM) approach to compute the sub-state of the brain and extract the main features of the functional magnetic resonance imaging(fMRI). Then, two stacked denoising autoencoders were applied to extract the features and reduce the dimension. At last, the MLP was utilized to complete the classification task and do fine-tuning based on the autoencoder encoders weights. The experiments were carried out on the Autism Brain Imaging Data Exchange (ABIDE) datasets. Result shows that we acquired a mean accuracy of 68.51%. Overall, our proposed classification is effective and provide evidence that dFC contains more brain states features.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

像自闭症谱系障碍(ASD)这样的脑部疾病仍然很难诊断。近年来,不同的新型深度学习算法被应用于ASD检测。大多数研究使用功能连接(FC)模式来表征大脑活动。然而,动态功能连通性(dynamic functional connectivity, dFC)的研究表明,动态功能连通性比动态功能连通性更能表征大脑内在组织随时间的变化。本文的目标是确定dFC特征在使用深度学习对ASD进行分类时比FC特征更成功。本文提出了一种基于dFC和深度神经网络的分类模型。首先,采用窗口k-均值(WKM)方法计算脑的子状态,提取功能磁共振成像(fMRI)的主要特征;然后,采用两个叠置去噪自编码器进行特征提取和降维;最后,利用MLP完成分类任务,并根据自编码器的编码器权值进行微调。实验在自闭症脑成像数据交换(Autism Brain Imaging Data Exchange,简称ABIDE)数据集上进行。结果表明,平均准确率为68.51%。总的来说,我们提出的分类是有效的,并提供证据表明dFC包含更多的大脑状态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved dynamic functional connectivity and deep neural network model for Autism Spectrum Disorder Classification
Brain disorders such as autism spectrum disorder (ASD) is still difficult to diagnose. In the recent years, different novel deep learning algorithms have been applied to detect ASD. Most studies use the functional connectivity (FC) pattern to represent the brain activities. However, it has been investigated that dynamic functional connectivity (dFC) which represent more features than FC can characterize the intrinsic brain organization changes over time. The goal of this paper is to determine that dFC features are more successful than FC features in the classification of ASD using deep learning. In this paper, we propose a classification model using dFC and deep neural network. Firstly, we used windowed k-means (WKM) approach to compute the sub-state of the brain and extract the main features of the functional magnetic resonance imaging(fMRI). Then, two stacked denoising autoencoders were applied to extract the features and reduce the dimension. At last, the MLP was utilized to complete the classification task and do fine-tuning based on the autoencoder encoders weights. The experiments were carried out on the Autism Brain Imaging Data Exchange (ABIDE) datasets. Result shows that we acquired a mean accuracy of 68.51%. Overall, our proposed classification is effective and provide evidence that dFC contains more brain states features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Fake News on Social Media by CSIBERT Automated Recognition of Oracle Bone Inscriptions Using Deep Learning and Data Augmentation Weather Recognition Based on Still Images Using Deep Learning Neural Network with Resnet-15 Ultrasonic scanning image defect detection of plastic packaging components based on FCOS Household Load Identification Based on Multi-label and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1