确定高级系统规范的性能边界

W. V. Teijlingen, R. V. Leuken, C. Galuzzi, B. Kienhuis
{"title":"确定高级系统规范的性能边界","authors":"W. V. Teijlingen, R. V. Leuken, C. Galuzzi, B. Kienhuis","doi":"10.1145/2906363.2906386","DOIUrl":null,"url":null,"abstract":"We can significantly reduce the time required to realize designs if it is possible to find limits to the performance of an embedded system, solely based on high-level system specifications. For that purpose, we present in this paper the cprof profiler, which determines the number of clock cycles needed to execute a C-program in hardware. The cprof tool is based on the Clang compiler front-end to parse C-programs and to produce instrumented source code for the profiling. Using cprof, we determine a lower and upper bound limit for all 29 cases of the PolyBench/C benchmark suite. The lower and upper bound are determined using the absolute performance estimations assuming all statement are mapped onto the same processing resource and unbounded performance estimations assuming unlimited resources. We also compared the clock cycles found by cprof with RTL implementations for all 29 Polybench/C cases and found that cprof determines with 1.2% accuracy the correct number of clock cycles. It does this in a fraction of the time compared to the time needed to do a full RTL simulation.","PeriodicalId":344390,"journal":{"name":"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining Performance Boundaries on High-Level System Specifications\",\"authors\":\"W. V. Teijlingen, R. V. Leuken, C. Galuzzi, B. Kienhuis\",\"doi\":\"10.1145/2906363.2906386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We can significantly reduce the time required to realize designs if it is possible to find limits to the performance of an embedded system, solely based on high-level system specifications. For that purpose, we present in this paper the cprof profiler, which determines the number of clock cycles needed to execute a C-program in hardware. The cprof tool is based on the Clang compiler front-end to parse C-programs and to produce instrumented source code for the profiling. Using cprof, we determine a lower and upper bound limit for all 29 cases of the PolyBench/C benchmark suite. The lower and upper bound are determined using the absolute performance estimations assuming all statement are mapped onto the same processing resource and unbounded performance estimations assuming unlimited resources. We also compared the clock cycles found by cprof with RTL implementations for all 29 Polybench/C cases and found that cprof determines with 1.2% accuracy the correct number of clock cycles. It does this in a fraction of the time compared to the time needed to do a full RTL simulation.\",\"PeriodicalId\":344390,\"journal\":{\"name\":\"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2906363.2906386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2906363.2906386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果能够找到嵌入式系统性能的限制,仅基于高级系统规范,我们就可以大大减少实现设计所需的时间。为此,我们在本文中介绍了cprofiler,它决定了在硬件中执行c程序所需的时钟周期数。cprof工具基于Clang编译器前端,用于解析c程序并为分析生成经过检测的源代码。使用cprof,我们为PolyBench/C基准测试套件的所有29种情况确定了下限和上限。使用绝对性能估计(假设所有语句都映射到相同的处理资源)和无界性能估计(假设资源无限)确定下界和上界。我们还比较了cprof与RTL实现在所有29种Polybench/C情况下发现的时钟周期,发现cprof确定正确时钟周期数的准确性为1.2%。与完成完整的RTL模拟所需的时间相比,它只需要一小部分时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining Performance Boundaries on High-Level System Specifications
We can significantly reduce the time required to realize designs if it is possible to find limits to the performance of an embedded system, solely based on high-level system specifications. For that purpose, we present in this paper the cprof profiler, which determines the number of clock cycles needed to execute a C-program in hardware. The cprof tool is based on the Clang compiler front-end to parse C-programs and to produce instrumented source code for the profiling. Using cprof, we determine a lower and upper bound limit for all 29 cases of the PolyBench/C benchmark suite. The lower and upper bound are determined using the absolute performance estimations assuming all statement are mapped onto the same processing resource and unbounded performance estimations assuming unlimited resources. We also compared the clock cycles found by cprof with RTL implementations for all 29 Polybench/C cases and found that cprof determines with 1.2% accuracy the correct number of clock cycles. It does this in a fraction of the time compared to the time needed to do a full RTL simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Design Framework for Mapping Vectorized Synchronous Dataflow Graphs onto CPU-GPU Platforms Exploiting Configuration Dependencies for Rapid Area-efficient Customization of Soft-core Processors CSDFa: A Model for Exploiting the Trade-Off between Data and Pipeline Parallelism Cache-Aware Instruction SPM Allocation for Hard Real-Time Systems Exploring Single Source Shortest Path Parallelization on Shared Memory Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1