糖尿病患者低血糖预测移动软件设计研究

Miyeon Jung
{"title":"糖尿病患者低血糖预测移动软件设计研究","authors":"Miyeon Jung","doi":"10.1145/2897073.2897129","DOIUrl":null,"url":null,"abstract":"To alert diabetes patients of incipient hypoglycemia, we developed a hypoglycemia prediction algorithm and elicited design inspiration for new glucose management software. To identify the predictive factors, we conducted surveys, interviews, and diary studies, and developed a prediction model that uses self-monitored blood glucose. We tested the accuracy of prediction algorithms achieved by different machine learning methods, and found that the proposed algorithms have potential to predict hypoglycemia. Based on the proposed algorithm, we designed a new mobile application concept to support patients’ self-care, especially to avert hypoglycemia.","PeriodicalId":296509,"journal":{"name":"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Toward Designing Mobile Software to Predict Hypoglycemia for Patients with Diabetes\",\"authors\":\"Miyeon Jung\",\"doi\":\"10.1145/2897073.2897129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To alert diabetes patients of incipient hypoglycemia, we developed a hypoglycemia prediction algorithm and elicited design inspiration for new glucose management software. To identify the predictive factors, we conducted surveys, interviews, and diary studies, and developed a prediction model that uses self-monitored blood glucose. We tested the accuracy of prediction algorithms achieved by different machine learning methods, and found that the proposed algorithms have potential to predict hypoglycemia. Based on the proposed algorithm, we designed a new mobile application concept to support patients’ self-care, especially to avert hypoglycemia.\",\"PeriodicalId\":296509,\"journal\":{\"name\":\"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897073.2897129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897073.2897129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了提醒糖尿病患者早期低血糖,我们开发了一种低血糖预测算法,并获得了新的血糖管理软件的设计灵感。为了确定预测因素,我们进行了调查、访谈和日记研究,并开发了一种使用自我监测血糖的预测模型。我们测试了不同机器学习方法实现的预测算法的准确性,发现所提出的算法具有预测低血糖的潜力。基于提出的算法,我们设计了一个新的移动应用概念,以支持患者的自我护理,特别是避免低血糖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Designing Mobile Software to Predict Hypoglycemia for Patients with Diabetes
To alert diabetes patients of incipient hypoglycemia, we developed a hypoglycemia prediction algorithm and elicited design inspiration for new glucose management software. To identify the predictive factors, we conducted surveys, interviews, and diary studies, and developed a prediction model that uses self-monitored blood glucose. We tested the accuracy of prediction algorithms achieved by different machine learning methods, and found that the proposed algorithms have potential to predict hypoglycemia. Based on the proposed algorithm, we designed a new mobile application concept to support patients’ self-care, especially to avert hypoglycemia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preserving Energy Resources Using an Android Kernel Extension: A Case Study Comparing Performance Parameters of Mobile App Development Strategies VALERA: An Effective and Efficient Record-and-Replay Tool for Android Mobile Exergaming: Exergames on the Go Model Under Design and Over Design on Mobile Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1