比较不同时期的政治单位:时间序列-横断面分析概述

Phillippe J Scrimger
{"title":"比较不同时期的政治单位:时间序列-横断面分析概述","authors":"Phillippe J Scrimger","doi":"10.2139/ssrn.2988020","DOIUrl":null,"url":null,"abstract":"This article overviews time-series-cross-section (TSCS) data analysis in the social sciences, a method that has been gaining in popularity since the late 1990s. The paper outlines the pros and cons of the different strategies to model both the time-series and the cross-sectional dimensions of TSCS data. Most importantly, it is argued throughout that one should follow an iterative process when modeling TSCS data. This means using more general models first and then imposing some restrictions on the basis of theoretical insights and in accordance with the actual structure of the data.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Political Units Over Time: An Overview of Time-Series-Cross-Section Analysis\",\"authors\":\"Phillippe J Scrimger\",\"doi\":\"10.2139/ssrn.2988020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article overviews time-series-cross-section (TSCS) data analysis in the social sciences, a method that has been gaining in popularity since the late 1990s. The paper outlines the pros and cons of the different strategies to model both the time-series and the cross-sectional dimensions of TSCS data. Most importantly, it is argued throughout that one should follow an iterative process when modeling TSCS data. This means using more general models first and then imposing some restrictions on the basis of theoretical insights and in accordance with the actual structure of the data.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2988020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2988020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了时间序列横截面(TSCS)数据分析在社会科学中的应用,这是一种自20世纪90年代末以来越来越受欢迎的方法。本文概述了对TSCS数据的时间序列和横截面维度进行建模的不同策略的优缺点。最重要的是,在对TSCS数据建模时,应该遵循迭代过程。这意味着首先使用更一般的模型,然后根据理论见解和数据的实际结构施加一些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing Political Units Over Time: An Overview of Time-Series-Cross-Section Analysis
This article overviews time-series-cross-section (TSCS) data analysis in the social sciences, a method that has been gaining in popularity since the late 1990s. The paper outlines the pros and cons of the different strategies to model both the time-series and the cross-sectional dimensions of TSCS data. Most importantly, it is argued throughout that one should follow an iterative process when modeling TSCS data. This means using more general models first and then imposing some restrictions on the basis of theoretical insights and in accordance with the actual structure of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1