惊奇度——基于常识学习的知识图超图模式挖掘中的一种新的客观兴趣度度量

Shujing Ke, P. Spronck, B. Goertzel, Alex Van der Peet
{"title":"惊奇度——基于常识学习的知识图超图模式挖掘中的一种新的客观兴趣度度量","authors":"Shujing Ke, P. Spronck, B. Goertzel, Alex Van der Peet","doi":"10.1109/ICKG52313.2021.00017","DOIUrl":null,"url":null,"abstract":"Pattern mining usually results in huge amounts of patterns, among which only small percentages are interesting. In this paper, Surprisingness (including Surpringness_I and Surpringness_II) is proposed as an innovative objective multivariate interestingness measure for automatically identifying interesting patterns from a large quantity of patterns. Surprisingness is applicable in unstructured or semi-structured, multi-domain or mixed-domain data compared to existing measures. An experiment has been conducted enabling unsupervised learning of common sense, interesting patterns and exceptions from a knowledge graph database built from Wikipedia 1 extracted data (represented as directed labeled hypergraphs), using Surpringness.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surprisingness - A Novel Objective Interestingness Measure in Hypergraph Pattern Mining from Knowledge Graphs for Common Sense Learning\",\"authors\":\"Shujing Ke, P. Spronck, B. Goertzel, Alex Van der Peet\",\"doi\":\"10.1109/ICKG52313.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern mining usually results in huge amounts of patterns, among which only small percentages are interesting. In this paper, Surprisingness (including Surpringness_I and Surpringness_II) is proposed as an innovative objective multivariate interestingness measure for automatically identifying interesting patterns from a large quantity of patterns. Surprisingness is applicable in unstructured or semi-structured, multi-domain or mixed-domain data compared to existing measures. An experiment has been conducted enabling unsupervised learning of common sense, interesting patterns and exceptions from a knowledge graph database built from Wikipedia 1 extracted data (represented as directed labeled hypergraphs), using Surpringness.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模式挖掘通常会产生大量的模式,其中只有一小部分是有趣的。本文提出了一种创新的客观多元兴趣度度量,用于从大量模式中自动识别有趣模式。与现有度量相比,惊奇度适用于非结构化或半结构化、多域或混合域数据。已经进行了一个实验,使用Surpringness从维基百科1提取的数据(表示为有向标记超图)构建的知识图谱数据库中实现常识、有趣模式和例外的无监督学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surprisingness - A Novel Objective Interestingness Measure in Hypergraph Pattern Mining from Knowledge Graphs for Common Sense Learning
Pattern mining usually results in huge amounts of patterns, among which only small percentages are interesting. In this paper, Surprisingness (including Surpringness_I and Surpringness_II) is proposed as an innovative objective multivariate interestingness measure for automatically identifying interesting patterns from a large quantity of patterns. Surprisingness is applicable in unstructured or semi-structured, multi-domain or mixed-domain data compared to existing measures. An experiment has been conducted enabling unsupervised learning of common sense, interesting patterns and exceptions from a knowledge graph database built from Wikipedia 1 extracted data (represented as directed labeled hypergraphs), using Surpringness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Genetic Algorithm for Residual Static Correction A Robust Mathematical Model for Blood Supply Chain Network using Game Theory Divide and Conquer: Targeted Adversary Detection using Proximity and Dependency A divide-and-conquer method for computing preferred extensions of argumentation frameworks An efficient framework for sentence similarity inspired by quantum computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1