孤岛电力系统中独立配电网的实时同步控制

Yucheng Zhang, Huaxi Zheng, H. Mohammadpour, R. Dougal
{"title":"孤岛电力系统中独立配电网的实时同步控制","authors":"Yucheng Zhang, Huaxi Zheng, H. Mohammadpour, R. Dougal","doi":"10.1109/NAPS.2013.6666826","DOIUrl":null,"url":null,"abstract":"Traditional synchronizer cannot control multiple generators in distribution networks in coordination. In this paper, a real-time synchronization control (RTSC) is designed to keep all generators in different standalone distribution networks in synchronization at all times, which realizes a fast and reliable reconnection of disconnected power network. The frequency control and phase control in RTSC are investigated and low-pass filters are properly designed to avoid interference between these two controls. The simulation results in an isolated power system is verified the effectiveness of RTSC and have proved that the transient stability during reconfiguration process can be greatly enhanced by applying RTSC into system-level supervisory control of isolated power system.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-time synchronization control for standalone distribution networks in islanded power systems\",\"authors\":\"Yucheng Zhang, Huaxi Zheng, H. Mohammadpour, R. Dougal\",\"doi\":\"10.1109/NAPS.2013.6666826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional synchronizer cannot control multiple generators in distribution networks in coordination. In this paper, a real-time synchronization control (RTSC) is designed to keep all generators in different standalone distribution networks in synchronization at all times, which realizes a fast and reliable reconnection of disconnected power network. The frequency control and phase control in RTSC are investigated and low-pass filters are properly designed to avoid interference between these two controls. The simulation results in an isolated power system is verified the effectiveness of RTSC and have proved that the transient stability during reconfiguration process can be greatly enhanced by applying RTSC into system-level supervisory control of isolated power system.\",\"PeriodicalId\":421943,\"journal\":{\"name\":\"2013 North American Power Symposium (NAPS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2013.6666826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的同步器无法对配电网中的多台发电机进行协调控制。本文设计了一种实时同步控制系统(RTSC),使不同独立配电网中的所有发电机始终保持同步状态,实现了断开电网的快速、可靠的重新连接。研究了RTSC的频率控制和相位控制,并设计了适当的低通滤波器以避免这两个控制之间的干扰。仿真结果验证了RTSC的有效性,并证明了将RTSC应用于隔离电力系统的系统级监控,可以大大提高系统重构过程中的暂态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time synchronization control for standalone distribution networks in islanded power systems
Traditional synchronizer cannot control multiple generators in distribution networks in coordination. In this paper, a real-time synchronization control (RTSC) is designed to keep all generators in different standalone distribution networks in synchronization at all times, which realizes a fast and reliable reconnection of disconnected power network. The frequency control and phase control in RTSC are investigated and low-pass filters are properly designed to avoid interference between these two controls. The simulation results in an isolated power system is verified the effectiveness of RTSC and have proved that the transient stability during reconfiguration process can be greatly enhanced by applying RTSC into system-level supervisory control of isolated power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online estimation of power system distribution factors — A sparse representation approach Visualization of interarea oscillations using an extended subspace identification technique Wind power impact on power system frequency response Cost/benefit analysis for circuit breaker maintenance planning and scheduling Probabilistic modeling and reliability analysis for validating geomagnetically induced current data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1