{"title":"基于特征的光场变形","authors":"Zhunping Zhang, Lifeng Wang, B. Guo, H. Shum","doi":"10.1145/566570.566602","DOIUrl":null,"url":null,"abstract":"We present a feature-based technique for morphing 3D objects represented by light fields. Our technique enables morphing of image-based objects whose geometry and surface properties are too difficult to model with traditional vision and graphics techniques. Light field morphing is not based on 3D reconstruction; instead it relies on ray correspondence, i.e., the correspondence between rays of the source and target light fields. We address two main issues in light field morphing: feature specification and visibility changes. For feature specification, we develop an intuitive and easy-to-use user interface (UI). The key to this UI is feature polygons, which are intuitively specified as 3D polygons and are used as a control mechanism for ray correspondence in the abstract 4D ray space. For handling visibility changes due to object shape changes, we introduce ray-space warping. Ray-space warping can fill arbitrarily large holes caused by object shape changes; these holes are usually too large to be properly handled by traditional image warping. Our method can deal with non-Lambertian surfaces, including specular surfaces (with dense light fields). We demonstrate that light field morphing is an effective and easy-to-use technqiue that can generate convincing 3D morphing effects.","PeriodicalId":197746,"journal":{"name":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Feature-based light field morphing\",\"authors\":\"Zhunping Zhang, Lifeng Wang, B. Guo, H. Shum\",\"doi\":\"10.1145/566570.566602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a feature-based technique for morphing 3D objects represented by light fields. Our technique enables morphing of image-based objects whose geometry and surface properties are too difficult to model with traditional vision and graphics techniques. Light field morphing is not based on 3D reconstruction; instead it relies on ray correspondence, i.e., the correspondence between rays of the source and target light fields. We address two main issues in light field morphing: feature specification and visibility changes. For feature specification, we develop an intuitive and easy-to-use user interface (UI). The key to this UI is feature polygons, which are intuitively specified as 3D polygons and are used as a control mechanism for ray correspondence in the abstract 4D ray space. For handling visibility changes due to object shape changes, we introduce ray-space warping. Ray-space warping can fill arbitrarily large holes caused by object shape changes; these holes are usually too large to be properly handled by traditional image warping. Our method can deal with non-Lambertian surfaces, including specular surfaces (with dense light fields). We demonstrate that light field morphing is an effective and easy-to-use technqiue that can generate convincing 3D morphing effects.\",\"PeriodicalId\":197746,\"journal\":{\"name\":\"Proceedings of the 29th annual conference on Computer graphics and interactive techniques\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/566570.566602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566570.566602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a feature-based technique for morphing 3D objects represented by light fields. Our technique enables morphing of image-based objects whose geometry and surface properties are too difficult to model with traditional vision and graphics techniques. Light field morphing is not based on 3D reconstruction; instead it relies on ray correspondence, i.e., the correspondence between rays of the source and target light fields. We address two main issues in light field morphing: feature specification and visibility changes. For feature specification, we develop an intuitive and easy-to-use user interface (UI). The key to this UI is feature polygons, which are intuitively specified as 3D polygons and are used as a control mechanism for ray correspondence in the abstract 4D ray space. For handling visibility changes due to object shape changes, we introduce ray-space warping. Ray-space warping can fill arbitrarily large holes caused by object shape changes; these holes are usually too large to be properly handled by traditional image warping. Our method can deal with non-Lambertian surfaces, including specular surfaces (with dense light fields). We demonstrate that light field morphing is an effective and easy-to-use technqiue that can generate convincing 3D morphing effects.