BM25文档长度规范化的冗余裂变

Aldo Lipani, M. Lupu, A. Hanbury, Akiko Aizawa
{"title":"BM25文档长度规范化的冗余裂变","authors":"Aldo Lipani, M. Lupu, A. Hanbury, Akiko Aizawa","doi":"10.1145/2808194.2809486","DOIUrl":null,"url":null,"abstract":"BM25 is probably the most well known term weighting model in Information Retrieval. It has, depending on the formula variant at hand, 2 or 3 parameters (k1, b, and k3). This paper addresses b - the document length normalization parameter. Based on the observation that the two cases previously discussed for length normalization (multi-topicality and verboseness) are actually three: multi-topicality, verboseness with word repetition (repetitiveness) and verboseness with synonyms, we propose and test a new length normalization method that removes the need for a b parameter in BM25. Testing the new method on a set of purposefully varied test collections, we observe that we can obtain results statistically indistinguishable from the optimal results, therefore removing the need for ground-truth based optimization.","PeriodicalId":440325,"journal":{"name":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Verboseness Fission for BM25 Document Length Normalization\",\"authors\":\"Aldo Lipani, M. Lupu, A. Hanbury, Akiko Aizawa\",\"doi\":\"10.1145/2808194.2809486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BM25 is probably the most well known term weighting model in Information Retrieval. It has, depending on the formula variant at hand, 2 or 3 parameters (k1, b, and k3). This paper addresses b - the document length normalization parameter. Based on the observation that the two cases previously discussed for length normalization (multi-topicality and verboseness) are actually three: multi-topicality, verboseness with word repetition (repetitiveness) and verboseness with synonyms, we propose and test a new length normalization method that removes the need for a b parameter in BM25. Testing the new method on a set of purposefully varied test collections, we observe that we can obtain results statistically indistinguishable from the optimal results, therefore removing the need for ground-truth based optimization.\",\"PeriodicalId\":440325,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on The Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808194.2809486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on The Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808194.2809486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

BM25可能是信息检索中最著名的术语加权模型。根据手头的公式变体,它有2或3个参数(k1, b和k3)。本文讨论了文档长度规范化参数b。基于前面讨论的长度规范化的两种情况(多主题性和冗长性)实际上是三种情况:多主题性、单词重复的冗长性(重复性)和同义词的冗长性,我们提出并测试了一种新的长度规范化方法,该方法在BM25中不需要b参数。在一组有目的地变化的测试集合上测试新方法,我们观察到我们可以获得与最优结果在统计上无法区分的结果,因此无需基于真值的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verboseness Fission for BM25 Document Length Normalization
BM25 is probably the most well known term weighting model in Information Retrieval. It has, depending on the formula variant at hand, 2 or 3 parameters (k1, b, and k3). This paper addresses b - the document length normalization parameter. Based on the observation that the two cases previously discussed for length normalization (multi-topicality and verboseness) are actually three: multi-topicality, verboseness with word repetition (repetitiveness) and verboseness with synonyms, we propose and test a new length normalization method that removes the need for a b parameter in BM25. Testing the new method on a set of purposefully varied test collections, we observe that we can obtain results statistically indistinguishable from the optimal results, therefore removing the need for ground-truth based optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entity Linking in Queries: Tasks and Evaluation Using Part-of-Speech N-grams for Sensitive-Text Classification Query Expansion with Freebase Partially Labeled Supervised Topic Models for RetrievingSimilar Questions in CQA Forums Two Operators to Define and Manipulate Themes of a Document Collection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1