{"title":"一线护理人员对Cv-19症状的生理监测:多分辨率分析和卷积-循环网络","authors":"O. Dehzangi, P. Jeihouni, V. Finomore, A. Rezai","doi":"10.1109/ICIP42928.2021.9506495","DOIUrl":null,"url":null,"abstract":"Due to easy transmission of the COVID-19, a crucial step is the effective screening of the front-line caregivers are one of the most vulnerable populations for early signs and symptoms, resembling the onset of the disease. Our aim in this paper is to track a combination of biomarkers in our ubiquitous experimental setup to monitor the human participants’ operating system to predict the likelihood of the viral infection symptoms during the next 2 days using a mobile app, and an unobtrusive wearable ring to track their physiological indicators and self-reported symptoms. we propose a multi-resolution signal processing and modeling method to effectively characterize the changes in those physiological indicators. In this way, we decompose the 1-D input windowed time-series in multi-resolution (i.e. 2-D spectro-temporal) space. Then, we fitted our proposed deep learning architecture that combines recurrent neural network (RNN) and convolutional neural network (CNN) to incorporate and model the sequence of multi-resolution snapshots in 3-D time-series space. The CNN is used to objectify the underlying features in each of the 2D spectro-temporal snapshots, while the RNN is utilized to track the temporal dynamic behavior of the snapshot sequences to predict the patients’ COVID-19 related symptoms. As the experimental results show, our proposed architecture with the best configuration achieves 87.53% and 95.12% average accuracy in predicting the COVID-19 related symptoms.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Physiological Monitoring Of Front-Line Caregivers For Cv-19 Symptoms: Multi-Resolution Analysis & Convolutional-Recurrent Networks\",\"authors\":\"O. Dehzangi, P. Jeihouni, V. Finomore, A. Rezai\",\"doi\":\"10.1109/ICIP42928.2021.9506495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to easy transmission of the COVID-19, a crucial step is the effective screening of the front-line caregivers are one of the most vulnerable populations for early signs and symptoms, resembling the onset of the disease. Our aim in this paper is to track a combination of biomarkers in our ubiquitous experimental setup to monitor the human participants’ operating system to predict the likelihood of the viral infection symptoms during the next 2 days using a mobile app, and an unobtrusive wearable ring to track their physiological indicators and self-reported symptoms. we propose a multi-resolution signal processing and modeling method to effectively characterize the changes in those physiological indicators. In this way, we decompose the 1-D input windowed time-series in multi-resolution (i.e. 2-D spectro-temporal) space. Then, we fitted our proposed deep learning architecture that combines recurrent neural network (RNN) and convolutional neural network (CNN) to incorporate and model the sequence of multi-resolution snapshots in 3-D time-series space. The CNN is used to objectify the underlying features in each of the 2D spectro-temporal snapshots, while the RNN is utilized to track the temporal dynamic behavior of the snapshot sequences to predict the patients’ COVID-19 related symptoms. As the experimental results show, our proposed architecture with the best configuration achieves 87.53% and 95.12% average accuracy in predicting the COVID-19 related symptoms.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physiological Monitoring Of Front-Line Caregivers For Cv-19 Symptoms: Multi-Resolution Analysis & Convolutional-Recurrent Networks
Due to easy transmission of the COVID-19, a crucial step is the effective screening of the front-line caregivers are one of the most vulnerable populations for early signs and symptoms, resembling the onset of the disease. Our aim in this paper is to track a combination of biomarkers in our ubiquitous experimental setup to monitor the human participants’ operating system to predict the likelihood of the viral infection symptoms during the next 2 days using a mobile app, and an unobtrusive wearable ring to track their physiological indicators and self-reported symptoms. we propose a multi-resolution signal processing and modeling method to effectively characterize the changes in those physiological indicators. In this way, we decompose the 1-D input windowed time-series in multi-resolution (i.e. 2-D spectro-temporal) space. Then, we fitted our proposed deep learning architecture that combines recurrent neural network (RNN) and convolutional neural network (CNN) to incorporate and model the sequence of multi-resolution snapshots in 3-D time-series space. The CNN is used to objectify the underlying features in each of the 2D spectro-temporal snapshots, while the RNN is utilized to track the temporal dynamic behavior of the snapshot sequences to predict the patients’ COVID-19 related symptoms. As the experimental results show, our proposed architecture with the best configuration achieves 87.53% and 95.12% average accuracy in predicting the COVID-19 related symptoms.