基于模型的飞机俯仰调整率优化及软件算法改进

Rathinakumar, Manju Nanda, J. Jayanthi
{"title":"基于模型的飞机俯仰调整率优化及软件算法改进","authors":"Rathinakumar, Manju Nanda, J. Jayanthi","doi":"10.4172/2168-9792.1000151","DOIUrl":null,"url":null,"abstract":"In safety critical systems such as aerospace, it becomes more important since the non-performance of the system as per the requirement may lead to a catastrophe. Also, the work-around to modify the design as per the requirements, generate code, obtain safety clearance from the authorized agency before porting to the target is very time consuming and a cumbersome approach. In this paper, we propose a model-based approach to improve the performance of the software algorithm and optimize the pitch trim movement before porting the code to the target. The effectiveness of the approach is demonstrated with a case study of aerospacedomain. The approach encompasses the aircraft sub-system dynamics and the software which operates the sub-system. The analysis of the functionality with performance provides a high level of confidence in the software that is to be ported on to the target. The test crew can provide feedback on the overall functionality and performance of the software at the model-level. The proposed approach not only increases the efficacy of the process but also provides higher safety assurance earlier in the process. Pitch-trim is a critical sub-system of the aircraft which is modeled and the improved software algorithm is incorporated into the model for analyzing the overall functionality and performance of the sub-system. Based on the model simulation and analysis result, the changes in the algorithm were made and finally ported onto the target. The performance and functionality of the pitch-trim sub-system on the aircraft was as per the simulation analysis results indicating the correctness of the model and the proposed approach.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Aircraft Pitch Trim Rate of Movement Using Model BasedApproach and Improving the Software Algorithm\",\"authors\":\"Rathinakumar, Manju Nanda, J. Jayanthi\",\"doi\":\"10.4172/2168-9792.1000151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In safety critical systems such as aerospace, it becomes more important since the non-performance of the system as per the requirement may lead to a catastrophe. Also, the work-around to modify the design as per the requirements, generate code, obtain safety clearance from the authorized agency before porting to the target is very time consuming and a cumbersome approach. In this paper, we propose a model-based approach to improve the performance of the software algorithm and optimize the pitch trim movement before porting the code to the target. The effectiveness of the approach is demonstrated with a case study of aerospacedomain. The approach encompasses the aircraft sub-system dynamics and the software which operates the sub-system. The analysis of the functionality with performance provides a high level of confidence in the software that is to be ported on to the target. The test crew can provide feedback on the overall functionality and performance of the software at the model-level. The proposed approach not only increases the efficacy of the process but also provides higher safety assurance earlier in the process. Pitch-trim is a critical sub-system of the aircraft which is modeled and the improved software algorithm is incorporated into the model for analyzing the overall functionality and performance of the sub-system. Based on the model simulation and analysis result, the changes in the algorithm were made and finally ported onto the target. The performance and functionality of the pitch-trim sub-system on the aircraft was as per the simulation analysis results indicating the correctness of the model and the proposed approach.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在航空航天等安全关键系统中,由于系统不按要求运行可能导致灾难,因此它变得更加重要。此外,根据需求修改设计、生成代码、在移植到目标之前获得授权机构的安全许可等工作是非常耗时和繁琐的方法。在本文中,我们提出了一种基于模型的方法来提高软件算法的性能,并在将代码移植到目标之前优化俯仰修剪运动。以航空航天领域为例,验证了该方法的有效性。该方法包括飞机子系统动力学和操作子系统的软件。对功能和性能的分析为要移植到目标上的软件提供了高度的信心。测试人员可以在模型级别上对软件的整体功能和性能提供反馈。该方法不仅提高了工艺的有效性,而且在工艺早期提供了更高的安全保证。俯仰调节是飞机的关键子系统,本文对该子系统进行了建模,并将改进的软件算法纳入模型中,对该子系统的整体功能和性能进行了分析。根据模型仿真和分析结果,对算法进行了修改,并最终移植到目标上。仿真分析结果表明,该模型和所提方法是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Aircraft Pitch Trim Rate of Movement Using Model BasedApproach and Improving the Software Algorithm
In safety critical systems such as aerospace, it becomes more important since the non-performance of the system as per the requirement may lead to a catastrophe. Also, the work-around to modify the design as per the requirements, generate code, obtain safety clearance from the authorized agency before porting to the target is very time consuming and a cumbersome approach. In this paper, we propose a model-based approach to improve the performance of the software algorithm and optimize the pitch trim movement before porting the code to the target. The effectiveness of the approach is demonstrated with a case study of aerospacedomain. The approach encompasses the aircraft sub-system dynamics and the software which operates the sub-system. The analysis of the functionality with performance provides a high level of confidence in the software that is to be ported on to the target. The test crew can provide feedback on the overall functionality and performance of the software at the model-level. The proposed approach not only increases the efficacy of the process but also provides higher safety assurance earlier in the process. Pitch-trim is a critical sub-system of the aircraft which is modeled and the improved software algorithm is incorporated into the model for analyzing the overall functionality and performance of the sub-system. Based on the model simulation and analysis result, the changes in the algorithm were made and finally ported onto the target. The performance and functionality of the pitch-trim sub-system on the aircraft was as per the simulation analysis results indicating the correctness of the model and the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1