Simon Dyhr S⊘nderskov, M. Swierczynski, S. Munk‐Nielsen
{"title":"混合备用电源系统的寿命预测:最新技术","authors":"Simon Dyhr S⊘nderskov, M. Swierczynski, S. Munk‐Nielsen","doi":"10.1109/INTLEC.2017.8214199","DOIUrl":null,"url":null,"abstract":"Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper is a first step towards a condition monitoring approach for such systems. Firstly, the application is defined, thereafter the benefits of predictive maintenance strategies and the prognostics and health management framework are described. A literature review of condition monitoring of the major system components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lifetime prognostics of hybrid backup power system: State-of-the-art\",\"authors\":\"Simon Dyhr S⊘nderskov, M. Swierczynski, S. Munk‐Nielsen\",\"doi\":\"10.1109/INTLEC.2017.8214199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper is a first step towards a condition monitoring approach for such systems. Firstly, the application is defined, thereafter the benefits of predictive maintenance strategies and the prognostics and health management framework are described. A literature review of condition monitoring of the major system components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view.\",\"PeriodicalId\":366207,\"journal\":{\"name\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2017.8214199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8214199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lifetime prognostics of hybrid backup power system: State-of-the-art
Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper is a first step towards a condition monitoring approach for such systems. Firstly, the application is defined, thereafter the benefits of predictive maintenance strategies and the prognostics and health management framework are described. A literature review of condition monitoring of the major system components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view.