HPC运行时堆栈环境下的资源管理研究

Arthur Loussert, Benoit Welterlen, Patrick Carribault, Julien Jaeger, Marc Pérache, R. Namyst
{"title":"HPC运行时堆栈环境下的资源管理研究","authors":"Arthur Loussert, Benoit Welterlen, Patrick Carribault, Julien Jaeger, Marc Pérache, R. Namyst","doi":"10.1109/SBAC-PAD.2017.30","DOIUrl":null,"url":null,"abstract":"With the advent of multicore and manycore processors as building blocks of HPC supercomputers, many applications shift from relying solely on a distributed programming model (e.g., MPI) to mixing distributed and shared-memory models (e.g., MPI+OpenMP), to better exploit shared-memory communications and reduce the overall memory footprint. One side effect of this programming approach is runtime stacking: mixing multiple models involve various runtime libraries to be alive at the same time and to share the underlying computing resources. This paper explores different configurations where this stacking may appear and introduces algorithms to detect the misuse of compute resources when running a hybrid parallel application. We have implemented our algorithms inside a dynamic tool that monitors applications and outputs resource usage to the user. We validated this tool on applications from CORAL benchmarks. This leads to relevant information which can be used to improve runtime placement, and to an average overhead lower than 1% of total execution time.","PeriodicalId":187204,"journal":{"name":"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource-Management Study in HPC Runtime-Stacking Context\",\"authors\":\"Arthur Loussert, Benoit Welterlen, Patrick Carribault, Julien Jaeger, Marc Pérache, R. Namyst\",\"doi\":\"10.1109/SBAC-PAD.2017.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of multicore and manycore processors as building blocks of HPC supercomputers, many applications shift from relying solely on a distributed programming model (e.g., MPI) to mixing distributed and shared-memory models (e.g., MPI+OpenMP), to better exploit shared-memory communications and reduce the overall memory footprint. One side effect of this programming approach is runtime stacking: mixing multiple models involve various runtime libraries to be alive at the same time and to share the underlying computing resources. This paper explores different configurations where this stacking may appear and introduces algorithms to detect the misuse of compute resources when running a hybrid parallel application. We have implemented our algorithms inside a dynamic tool that monitors applications and outputs resource usage to the user. We validated this tool on applications from CORAL benchmarks. This leads to relevant information which can be used to improve runtime placement, and to an average overhead lower than 1% of total execution time.\",\"PeriodicalId\":187204,\"journal\":{\"name\":\"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD.2017.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2017.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着多核和多核处理器作为HPC超级计算机的构建模块的出现,许多应用程序从仅仅依赖分布式编程模型(例如MPI)转变为混合分布式和共享内存模型(例如MPI+OpenMP),以更好地利用共享内存通信并减少总体内存占用。这种编程方法的一个副作用是运行时堆叠:混合多个模型涉及到同时活动的各种运行时库,并共享底层计算资源。本文探讨了可能出现这种堆叠的不同配置,并介绍了在运行混合并行应用程序时检测计算资源滥用的算法。我们在一个动态工具中实现了算法,该工具监视应用程序并向用户输出资源使用情况。我们在来自CORAL基准测试的应用程序上验证了这个工具。这将产生相关信息,这些信息可用于改进运行时位置,并使平均开销低于总执行时间的1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource-Management Study in HPC Runtime-Stacking Context
With the advent of multicore and manycore processors as building blocks of HPC supercomputers, many applications shift from relying solely on a distributed programming model (e.g., MPI) to mixing distributed and shared-memory models (e.g., MPI+OpenMP), to better exploit shared-memory communications and reduce the overall memory footprint. One side effect of this programming approach is runtime stacking: mixing multiple models involve various runtime libraries to be alive at the same time and to share the underlying computing resources. This paper explores different configurations where this stacking may appear and introduces algorithms to detect the misuse of compute resources when running a hybrid parallel application. We have implemented our algorithms inside a dynamic tool that monitors applications and outputs resource usage to the user. We validated this tool on applications from CORAL benchmarks. This leads to relevant information which can be used to improve runtime placement, and to an average overhead lower than 1% of total execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource-Management Study in HPC Runtime-Stacking Context Cloud Workload Prediction and Generation Models GC-CR: A Decentralized Garbage Collector Component for Checkpointing in Clouds Overcoming Memory-Capacity Constraints in the Use of ILUPACK on Graphics Processors Beyond the Fog: Bringing Cross-Platform Code Execution to Constrained IoT Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1