利用Lotka-Volterra递归神经网络的竞争层模型提取长轮廓

Bochuan Zheng, Zhang Yi
{"title":"利用Lotka-Volterra递归神经网络的竞争层模型提取长轮廓","authors":"Bochuan Zheng, Zhang Yi","doi":"10.1109/ICACTE.2010.5579569","DOIUrl":null,"url":null,"abstract":"It is well known that contours in image are salient when a series of edge elements are aligned in a collinear or co-circular fashion. In this paper, a contour extractor is constructed to extract contours by using the competitive layer mode implemented by Lotka-Volterra recurrent neural networks. This extractor can bind all edge elements which belong to a contour onto a layer. In order to extract long contours, by moving the established contour extractor along a long contour, then the long contour can be extracted segment by segment. Experiments show that the proposed method can extract long contour properly from images.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extracting long contour by using the competitive layer model of the Lotka-Volterra recurrent neural networks\",\"authors\":\"Bochuan Zheng, Zhang Yi\",\"doi\":\"10.1109/ICACTE.2010.5579569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that contours in image are salient when a series of edge elements are aligned in a collinear or co-circular fashion. In this paper, a contour extractor is constructed to extract contours by using the competitive layer mode implemented by Lotka-Volterra recurrent neural networks. This extractor can bind all edge elements which belong to a contour onto a layer. In order to extract long contours, by moving the established contour extractor along a long contour, then the long contour can be extracted segment by segment. Experiments show that the proposed method can extract long contour properly from images.\",\"PeriodicalId\":255806,\"journal\":{\"name\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2010.5579569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,当一系列边缘元素以共线或共圆的方式排列时,图像中的轮廓是显著的。利用Lotka-Volterra递归神经网络实现的竞争层模式,构造轮廓提取器提取轮廓。该提取器可以将属于一个轮廓的所有边缘元素绑定到一个层上。为了提取长轮廓,通过沿长轮廓移动所建立的轮廓提取器,可以逐段提取长轮廓。实验表明,该方法能较好地提取图像中的长轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting long contour by using the competitive layer model of the Lotka-Volterra recurrent neural networks
It is well known that contours in image are salient when a series of edge elements are aligned in a collinear or co-circular fashion. In this paper, a contour extractor is constructed to extract contours by using the competitive layer mode implemented by Lotka-Volterra recurrent neural networks. This extractor can bind all edge elements which belong to a contour onto a layer. In order to extract long contours, by moving the established contour extractor along a long contour, then the long contour can be extracted segment by segment. Experiments show that the proposed method can extract long contour properly from images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Title pages Title pages Title pages A new online fault diagnosis algorithm based on likelihood ratio and Tabu search in distribution networks An information extraction of title panel in engineering drawings and automatic generation system of three statistical tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1