面向COTS多核实时系统的内存中心调度实现

J. Rivas, J. Goossens, Xavier Poczekajlo, Antonio Paolillo
{"title":"面向COTS多核实时系统的内存中心调度实现","authors":"J. Rivas, J. Goossens, Xavier Poczekajlo, Antonio Paolillo","doi":"10.4230/LIPICS.ECRTS.2019.7","DOIUrl":null,"url":null,"abstract":"The demands for high performance computing with a low cost and low power consumption are driving a transition towards multi-core processors in many consumer and industrial applications. However, the adoption of multi-core processors in the domain of real-time systems faces a series of challenges that has been the focus of great research intensity during the last decade. These challenges arise in great part from the non real-time nature of the hardware arbiters that schedule the access to shared resources, such as the main memory. One solution proposed in the literature is called Memory Centric Scheduling, which defines a separate software scheduler for the sections of the tasks that will access the main memory, hence circumventing the low level unpredictable hardware arbiters. Several Memory Centric schedulers and associated theoretical analyses have been proposed, but as far as we know, no actual implementation of the required OS-level underpinnings to support dynamic event-driven Memory Centric Scheduling has been presented before. In this paper we aim to fill this gap, targeting cache based COTS multi-core systems. We will confirm via measurements the main theoretical benefits of Memory Centric Scheduling (e.g. task isolation). Furthermore, we will describe an effective schedulability analysis using concepts from distributed systems.","PeriodicalId":191379,"journal":{"name":"Euromicro Conference on Real-Time Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Implementation of Memory Centric Scheduling for COTS Multi-Core Real-Time Systems\",\"authors\":\"J. Rivas, J. Goossens, Xavier Poczekajlo, Antonio Paolillo\",\"doi\":\"10.4230/LIPICS.ECRTS.2019.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demands for high performance computing with a low cost and low power consumption are driving a transition towards multi-core processors in many consumer and industrial applications. However, the adoption of multi-core processors in the domain of real-time systems faces a series of challenges that has been the focus of great research intensity during the last decade. These challenges arise in great part from the non real-time nature of the hardware arbiters that schedule the access to shared resources, such as the main memory. One solution proposed in the literature is called Memory Centric Scheduling, which defines a separate software scheduler for the sections of the tasks that will access the main memory, hence circumventing the low level unpredictable hardware arbiters. Several Memory Centric schedulers and associated theoretical analyses have been proposed, but as far as we know, no actual implementation of the required OS-level underpinnings to support dynamic event-driven Memory Centric Scheduling has been presented before. In this paper we aim to fill this gap, targeting cache based COTS multi-core systems. We will confirm via measurements the main theoretical benefits of Memory Centric Scheduling (e.g. task isolation). Furthermore, we will describe an effective schedulability analysis using concepts from distributed systems.\",\"PeriodicalId\":191379,\"journal\":{\"name\":\"Euromicro Conference on Real-Time Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPICS.ECRTS.2019.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPICS.ECRTS.2019.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

对低成本和低功耗的高性能计算的需求正在推动许多消费和工业应用向多核处理器的过渡。然而,多核处理器在实时系统领域的应用面临着一系列的挑战,这些挑战是近十年来研究的热点。这些挑战在很大程度上源于调度对共享资源(如主内存)访问的硬件仲裁器的非实时性。文献中提出的一种解决方案称为内存中心调度,它为访问主内存的任务部分定义了一个单独的软件调度程序,从而绕过了低级不可预测的硬件仲裁器。已经提出了几个Memory Centric调度器和相关的理论分析,但据我们所知,之前还没有提出支持动态事件驱动的Memory Centric Scheduling所需的操作系统级基础的实际实现。在本文中,我们的目标是填补这一空白,目标是基于缓存的COTS多核系统。我们将通过测量来确认内存中心调度的主要理论优势(例如任务隔离)。此外,我们将使用分布式系统的概念描述一个有效的可调度性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of Memory Centric Scheduling for COTS Multi-Core Real-Time Systems
The demands for high performance computing with a low cost and low power consumption are driving a transition towards multi-core processors in many consumer and industrial applications. However, the adoption of multi-core processors in the domain of real-time systems faces a series of challenges that has been the focus of great research intensity during the last decade. These challenges arise in great part from the non real-time nature of the hardware arbiters that schedule the access to shared resources, such as the main memory. One solution proposed in the literature is called Memory Centric Scheduling, which defines a separate software scheduler for the sections of the tasks that will access the main memory, hence circumventing the low level unpredictable hardware arbiters. Several Memory Centric schedulers and associated theoretical analyses have been proposed, but as far as we know, no actual implementation of the required OS-level underpinnings to support dynamic event-driven Memory Centric Scheduling has been presented before. In this paper we aim to fill this gap, targeting cache based COTS multi-core systems. We will confirm via measurements the main theoretical benefits of Memory Centric Scheduling (e.g. task isolation). Furthermore, we will describe an effective schedulability analysis using concepts from distributed systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1