基于人工免疫系统和神经网络的网络入侵检测

Raj Kumar Yaduwanshi Raj, Prof. Manorama Malviya
{"title":"基于人工免疫系统和神经网络的网络入侵检测","authors":"Raj Kumar Yaduwanshi Raj, Prof. Manorama Malviya","doi":"10.18535/ijecs/v11i04.4670","DOIUrl":null,"url":null,"abstract":"Easy access, simulation of IOT network increases its application and demands in different area. As many of IOT networks are vulnerable in nature and attracts intruders to take advantage of weak security. This paper has developed a model that can detect the IOT network intrusion. In this work feature optimization was done by use of artificial immune  system algorithm. AIS reduces the dimension of the dataset by applying affinity check and cloning steps. Selected features were further use for the traiing of neural network. Trained neural network predict the class of IOT network session (Normal / Malicious). Experiment was done on real dataset of IOT session and result shows that rpopsoed model has improved the detection accuracy as compared o existing models.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Intrusion Detection by Artificial Immune System and Neural Network\",\"authors\":\"Raj Kumar Yaduwanshi Raj, Prof. Manorama Malviya\",\"doi\":\"10.18535/ijecs/v11i04.4670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Easy access, simulation of IOT network increases its application and demands in different area. As many of IOT networks are vulnerable in nature and attracts intruders to take advantage of weak security. This paper has developed a model that can detect the IOT network intrusion. In this work feature optimization was done by use of artificial immune  system algorithm. AIS reduces the dimension of the dataset by applying affinity check and cloning steps. Selected features were further use for the traiing of neural network. Trained neural network predict the class of IOT network session (Normal / Malicious). Experiment was done on real dataset of IOT session and result shows that rpopsoed model has improved the detection accuracy as compared o existing models.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/ijecs/v11i04.4670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v11i04.4670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网网络的易访问性、可模拟性增加了其在不同领域的应用和需求。由于许多物联网网络本质上是脆弱的,并吸引入侵者利用薄弱的安全性。本文建立了一个能够检测物联网网络入侵的模型。利用人工免疫系统算法进行特征优化。AIS通过应用亲和性检查和克隆步骤来降低数据集的维数。选择的特征进一步用于神经网络的训练。训练神经网络预测物联网网络会话的类别(正常/恶意)。在物联网会话的真实数据集上进行了实验,结果表明,与现有模型相比,改进的模型提高了检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Intrusion Detection by Artificial Immune System and Neural Network
Easy access, simulation of IOT network increases its application and demands in different area. As many of IOT networks are vulnerable in nature and attracts intruders to take advantage of weak security. This paper has developed a model that can detect the IOT network intrusion. In this work feature optimization was done by use of artificial immune  system algorithm. AIS reduces the dimension of the dataset by applying affinity check and cloning steps. Selected features were further use for the traiing of neural network. Trained neural network predict the class of IOT network session (Normal / Malicious). Experiment was done on real dataset of IOT session and result shows that rpopsoed model has improved the detection accuracy as compared o existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A FRAMEWORK FOR MANAGEMENT OF LEAKS AND EQUIPMENT FAILURE IN OIL WELLS Data-Driven Approach to Automated Lyric Generation Predictive Analytics for Demand Forecasting: A deep Learning-based Decision Support System A Model for Detection of Malwares on Edge Devices ENHANCE DOCUMENT VALIDATION UIPATH POWERED SIGNATURE VERIFICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1