多孔介质中颗粒分离与附着的研究进展

N. Ogolo, M. Onyekonwu
{"title":"多孔介质中颗粒分离与附着的研究进展","authors":"N. Ogolo, M. Onyekonwu","doi":"10.33736/jaspe.4719.2022","DOIUrl":null,"url":null,"abstract":"Particle detachment, migration and attachment are common processes in porous media, especially in unconsolidated formations. In this review, the processes are discussed and equations describing the processes are presented. Two particle detachment processes analyzed are the hydrodynamic forces and electric double-layer forces. The particle detachments equations were critically examined to determine if they reflect crucial factors that trigger particle detachment in porous media. Essential factors that are missing in the equation are the effect of pressure and the level of rock consolidation. Incorporating the level of rock cementation and the effect of pressure in the equations will make the models more empirical and less theoretical. For particle attachment, Van der Waals forces, adhesion, particle attachment efficiency, and straining processes and their equations are considered. The colloidal forces are all embraced in terms of capturing important elements that mobilize particles in porous media, however, the practical application of the models can pose a challenge. For particle adsorption on grain surfaces, it is recommended that the effect of pressure and temperature be studied.","PeriodicalId":159511,"journal":{"name":"Journal of Applied Science & Process Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review of Particle Detachment and Attachment in Porous Media\",\"authors\":\"N. Ogolo, M. Onyekonwu\",\"doi\":\"10.33736/jaspe.4719.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle detachment, migration and attachment are common processes in porous media, especially in unconsolidated formations. In this review, the processes are discussed and equations describing the processes are presented. Two particle detachment processes analyzed are the hydrodynamic forces and electric double-layer forces. The particle detachments equations were critically examined to determine if they reflect crucial factors that trigger particle detachment in porous media. Essential factors that are missing in the equation are the effect of pressure and the level of rock consolidation. Incorporating the level of rock cementation and the effect of pressure in the equations will make the models more empirical and less theoretical. For particle attachment, Van der Waals forces, adhesion, particle attachment efficiency, and straining processes and their equations are considered. The colloidal forces are all embraced in terms of capturing important elements that mobilize particles in porous media, however, the practical application of the models can pose a challenge. For particle adsorption on grain surfaces, it is recommended that the effect of pressure and temperature be studied.\",\"PeriodicalId\":159511,\"journal\":{\"name\":\"Journal of Applied Science & Process Engineering\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Science & Process Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33736/jaspe.4719.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Science & Process Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33736/jaspe.4719.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

颗粒的分离、迁移和附着是多孔介质中常见的过程,特别是在松散地层中。在这篇综述中,讨论了这些过程,并提出了描述这些过程的方程。分析了两种粒子分离过程:水动力和电双层力。对颗粒分离方程进行了严格的检查,以确定它们是否反映了触发多孔介质中颗粒分离的关键因素。方程中缺少的重要因素是压力和岩石固结水平的影响。在方程中加入岩石胶结程度和压力的影响将使模型更具经验性,而非理论性。对于颗粒附着,考虑了范德华力、粘附力、颗粒附着效率和应变过程及其方程。在多孔介质中,胶体力都包含在捕获调动颗粒的重要元素方面,然而,模型的实际应用可能会带来挑战。对于颗粒表面的吸附,建议研究压力和温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of Particle Detachment and Attachment in Porous Media
Particle detachment, migration and attachment are common processes in porous media, especially in unconsolidated formations. In this review, the processes are discussed and equations describing the processes are presented. Two particle detachment processes analyzed are the hydrodynamic forces and electric double-layer forces. The particle detachments equations were critically examined to determine if they reflect crucial factors that trigger particle detachment in porous media. Essential factors that are missing in the equation are the effect of pressure and the level of rock consolidation. Incorporating the level of rock cementation and the effect of pressure in the equations will make the models more empirical and less theoretical. For particle attachment, Van der Waals forces, adhesion, particle attachment efficiency, and straining processes and their equations are considered. The colloidal forces are all embraced in terms of capturing important elements that mobilize particles in porous media, however, the practical application of the models can pose a challenge. For particle adsorption on grain surfaces, it is recommended that the effect of pressure and temperature be studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Scaling Potential in Oilfield Waters The Investigation of General Properties of Carbon Fiber (CF) Composites - Preliminary Study Liquid-Liquid Extraction of Itaconic Acid from the Aqueous Phase Using Natural and Chemical Solvents Volumetric Properties of Binary Mixtures of 2-Ethoxyethanol and 2-Butoxyethanol with 1,4-Dioxane An in-silico Evaluation of Some Schiff bases for Their Potency Against SARS-CoV-2 Main Protease, PASS Prediction and ADMET Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1