无线传感器网络的地球广播

R. Panta, R. Hall, J. Auzins, M. Fernandez
{"title":"无线传感器网络的地球广播","authors":"R. Panta, R. Hall, J. Auzins, M. Fernandez","doi":"10.1109/ICNP.2011.6089032","DOIUrl":null,"url":null,"abstract":"An important but relatively less studied class of network layer protocol for sensor networks is geocast. It allows a sensor node to send messages to all nodes in a given geographical area without the sender node having any knowledge about which nodes are present in that area. Developing a robust geocast protocol for practical sensor networks poses several challenges. Geocast messages should be reliably delivered to the destination area in the presence of unreliable wireless links, a typical characteristic of practical sensor network deployments. The protocol should minimize the number of radio transmissions and avoid control traffic to save energy, which is a scarce resource in sensor networks. The protocol should be robust against a wide range of network densities. This paper presents the design, implementation, and evaluation of SGcast — a reliable, robust, and energy-efficient geocast protocol that achieves these goals. For a wide range of experiments conducted using networks of real sensor nodes and simulations, we show that compared to a recent geocast protocol, SGcast achieves up to 11.08x reduction in energy consumption and up to 2.17x improvement in successful delivery of geocast messages to the destination area, while being robust against a wide variability in network densities.","PeriodicalId":202059,"journal":{"name":"2011 19th IEEE International Conference on Network Protocols","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geocast for wireless sensor networks\",\"authors\":\"R. Panta, R. Hall, J. Auzins, M. Fernandez\",\"doi\":\"10.1109/ICNP.2011.6089032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important but relatively less studied class of network layer protocol for sensor networks is geocast. It allows a sensor node to send messages to all nodes in a given geographical area without the sender node having any knowledge about which nodes are present in that area. Developing a robust geocast protocol for practical sensor networks poses several challenges. Geocast messages should be reliably delivered to the destination area in the presence of unreliable wireless links, a typical characteristic of practical sensor network deployments. The protocol should minimize the number of radio transmissions and avoid control traffic to save energy, which is a scarce resource in sensor networks. The protocol should be robust against a wide range of network densities. This paper presents the design, implementation, and evaluation of SGcast — a reliable, robust, and energy-efficient geocast protocol that achieves these goals. For a wide range of experiments conducted using networks of real sensor nodes and simulations, we show that compared to a recent geocast protocol, SGcast achieves up to 11.08x reduction in energy consumption and up to 2.17x improvement in successful delivery of geocast messages to the destination area, while being robust against a wide variability in network densities.\",\"PeriodicalId\":202059,\"journal\":{\"name\":\"2011 19th IEEE International Conference on Network Protocols\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th IEEE International Conference on Network Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2011.6089032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th IEEE International Conference on Network Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2011.6089032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

geocast是传感器网络中一个重要但研究较少的网络层协议。它允许传感器节点向给定地理区域内的所有节点发送消息,而发送方节点不知道该区域内存在哪些节点。为实际的传感器网络开发一个鲁棒的地球广播协议提出了几个挑战。在不可靠的无线链路存在的情况下,地球广播消息应该可靠地传递到目的区域,这是实际传感器网络部署的典型特征。该协议应尽量减少无线电传输的数量,避免控制流量,以节省传感器网络中稀缺的能源。该协议应该对广泛的网络密度具有鲁棒性。本文介绍了SGcast的设计、实现和评估——一种可靠、健壮和节能的地球广播协议,可以实现这些目标。对于使用真实传感器节点网络和模拟进行的广泛实验,我们表明,与最近的地球广播协议相比,SGcast实现了高达11.08倍的能耗降低,高达2.17倍的地球广播消息成功交付到目标区域,同时对网络密度的广泛变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geocast for wireless sensor networks
An important but relatively less studied class of network layer protocol for sensor networks is geocast. It allows a sensor node to send messages to all nodes in a given geographical area without the sender node having any knowledge about which nodes are present in that area. Developing a robust geocast protocol for practical sensor networks poses several challenges. Geocast messages should be reliably delivered to the destination area in the presence of unreliable wireless links, a typical characteristic of practical sensor network deployments. The protocol should minimize the number of radio transmissions and avoid control traffic to save energy, which is a scarce resource in sensor networks. The protocol should be robust against a wide range of network densities. This paper presents the design, implementation, and evaluation of SGcast — a reliable, robust, and energy-efficient geocast protocol that achieves these goals. For a wide range of experiments conducted using networks of real sensor nodes and simulations, we show that compared to a recent geocast protocol, SGcast achieves up to 11.08x reduction in energy consumption and up to 2.17x improvement in successful delivery of geocast messages to the destination area, while being robust against a wide variability in network densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of mobility on user-centric routing What is wrong/right with IEEE 802.11n Spatial Multiplexing Power Save feature? Sidekick: AP aggregation over partially overlapping channels TUNIE: A virtualized platform for network experiment on programmable infrastructure Self-organizing TDMA for multihop networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1