基于上下文的行人检测视觉系统

P. Lombardi, B. Zavidovique
{"title":"基于上下文的行人检测视觉系统","authors":"P. Lombardi, B. Zavidovique","doi":"10.1109/IVS.2004.1336448","DOIUrl":null,"url":null,"abstract":"Robustness is a key issue in pedestrian detection for autonomous vehicles. Contextual information, if well exploited, should increase robustness and performance. Specifically, contextual knowledge allows for the integration of algorithms performing well only in specific situations, which would otherwise be excluded from a system designed for the general case. Here, we discuss using context in a vision-based system. Contextual evolution of scene parameters is represented as the hidden process of a Hidden Markov Model. Consequently, a Bayesian framework is adopted for all principal elements, including sensor models for specialised algorithms and sensors observing the current context. Our strategy allows re-use of known algorithms, at the same time enabling context-sensitive developments.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A context-dependent vision system for pedestrian detection\",\"authors\":\"P. Lombardi, B. Zavidovique\",\"doi\":\"10.1109/IVS.2004.1336448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robustness is a key issue in pedestrian detection for autonomous vehicles. Contextual information, if well exploited, should increase robustness and performance. Specifically, contextual knowledge allows for the integration of algorithms performing well only in specific situations, which would otherwise be excluded from a system designed for the general case. Here, we discuss using context in a vision-based system. Contextual evolution of scene parameters is represented as the hidden process of a Hidden Markov Model. Consequently, a Bayesian framework is adopted for all principal elements, including sensor models for specialised algorithms and sensors observing the current context. Our strategy allows re-use of known algorithms, at the same time enabling context-sensitive developments.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

鲁棒性是自动驾驶车辆行人检测的关键问题。如果充分利用上下文信息,应该可以提高健壮性和性能。具体来说,上下文知识允许仅在特定情况下执行良好的算法集成,否则将被排除在为一般情况设计的系统之外。在这里,我们讨论在基于视觉的系统中使用上下文。场景参数的上下文演化被表示为隐马尔可夫模型的隐藏过程。因此,所有主要元素都采用贝叶斯框架,包括用于专门算法的传感器模型和观察当前环境的传感器。我们的策略允许重用已知算法,同时支持上下文敏感的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A context-dependent vision system for pedestrian detection
Robustness is a key issue in pedestrian detection for autonomous vehicles. Contextual information, if well exploited, should increase robustness and performance. Specifically, contextual knowledge allows for the integration of algorithms performing well only in specific situations, which would otherwise be excluded from a system designed for the general case. Here, we discuss using context in a vision-based system. Contextual evolution of scene parameters is represented as the hidden process of a Hidden Markov Model. Consequently, a Bayesian framework is adopted for all principal elements, including sensor models for specialised algorithms and sensors observing the current context. Our strategy allows re-use of known algorithms, at the same time enabling context-sensitive developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an instrumented vehicle test bed for developing a human centered driver support system Defect detection on rail surfaces by a vision based system Probabilistic contour extraction with model-switching for vehicle localization A fuzzy ranking method for automated highway driving Fusion of range and vision for real-time motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1