用于控制器设计的对角递归神经网络

C. Ku, K.Y. Lee
{"title":"用于控制器设计的对角递归神经网络","authors":"C. Ku, K.Y. Lee","doi":"10.1109/ANN.1993.264344","DOIUrl":null,"url":null,"abstract":"A new neural network paradigm called diagonal recurrent neural network (DRNN) structure is presented, and is used to design a neural network controller, which includes both a neuroidentifier (DRNI) and a neurocontroller (DRNC). An unknown plant is identified by a neuroidentifier, which provides the sensitivity information of the plant to a neurocontroller. A generalized dynamical backpropagation algorithm (DBP) is developed to train both DRNC and DRNI. An approach to use an adaptive learning rate scheme based on the Lyapunov function is developed. The use of adaptive learning rates not only accelerates the learning speed but also guarantees the convergence of the neural network.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Diagonal recurrent neural network for controller designs\",\"authors\":\"C. Ku, K.Y. Lee\",\"doi\":\"10.1109/ANN.1993.264344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new neural network paradigm called diagonal recurrent neural network (DRNN) structure is presented, and is used to design a neural network controller, which includes both a neuroidentifier (DRNI) and a neurocontroller (DRNC). An unknown plant is identified by a neuroidentifier, which provides the sensitivity information of the plant to a neurocontroller. A generalized dynamical backpropagation algorithm (DBP) is developed to train both DRNC and DRNI. An approach to use an adaptive learning rate scheme based on the Lyapunov function is developed. The use of adaptive learning rates not only accelerates the learning speed but also guarantees the convergence of the neural network.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的神经网络范式,即对角递归神经网络(DRNN)结构,并利用该结构设计了一个神经网络控制器,该控制器包括神经辨识器(DRNI)和神经控制器(DRNC)。一个未知的植物被神经识别器识别,它向神经控制器提供该植物的灵敏度信息。提出了一种广义动态反向传播算法(DBP)来同时训练DRNC和DRNI。提出了一种基于李雅普诺夫函数的自适应学习率方案。自适应学习率的使用不仅加快了学习速度,而且保证了神经网络的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagonal recurrent neural network for controller designs
A new neural network paradigm called diagonal recurrent neural network (DRNN) structure is presented, and is used to design a neural network controller, which includes both a neuroidentifier (DRNI) and a neurocontroller (DRNC). An unknown plant is identified by a neuroidentifier, which provides the sensitivity information of the plant to a neurocontroller. A generalized dynamical backpropagation algorithm (DBP) is developed to train both DRNC and DRNI. An approach to use an adaptive learning rate scheme based on the Lyapunov function is developed. The use of adaptive learning rates not only accelerates the learning speed but also guarantees the convergence of the neural network.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1