G. M. Khanal, G. Cardarilli, A. Chakraborty, Simone Acciarito, M. Y. Mulla, L. Di Nunzio, R. Fazzolari, M. Re
{"title":"ZnO-rGO复合薄膜分立记忆电阻器","authors":"G. M. Khanal, G. Cardarilli, A. Chakraborty, Simone Acciarito, M. Y. Mulla, L. Di Nunzio, R. Fazzolari, M. Re","doi":"10.1109/SMELEC.2016.7573608","DOIUrl":null,"url":null,"abstract":"Ultrathin 2D materials such as TiO2, WOx, NiO, ZnO, VO2 and graphene, offer scope for low power, highly dense and ultra-fast electronic devices. Due to their extraordinary physical and electrical/electronic property. In this work, a novel forming free memristor has been realized based on hybrid film of ZnO-rGO. The structure of the device is Metal-Insulator-Metal structure, where the Zinc Oxide- Reduced Graphene Oxide (ZnO-rGO) thin film is sandwiched between Silver (Ag) and Fluorine-doped tin oxide (FTO) coated glass. Free oxygen vacancies were created within the composite film by using high temperature annealing at 500 degrees Celsius. We demonstrate bipolar resistive switching behavior of the new device. Also we show that the variation of the conductance of the device is related to delay time of the applied input voltage sweep.","PeriodicalId":169983,"journal":{"name":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A ZnO-rGO composite thin film discrete memristor\",\"authors\":\"G. M. Khanal, G. Cardarilli, A. Chakraborty, Simone Acciarito, M. Y. Mulla, L. Di Nunzio, R. Fazzolari, M. Re\",\"doi\":\"10.1109/SMELEC.2016.7573608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin 2D materials such as TiO2, WOx, NiO, ZnO, VO2 and graphene, offer scope for low power, highly dense and ultra-fast electronic devices. Due to their extraordinary physical and electrical/electronic property. In this work, a novel forming free memristor has been realized based on hybrid film of ZnO-rGO. The structure of the device is Metal-Insulator-Metal structure, where the Zinc Oxide- Reduced Graphene Oxide (ZnO-rGO) thin film is sandwiched between Silver (Ag) and Fluorine-doped tin oxide (FTO) coated glass. Free oxygen vacancies were created within the composite film by using high temperature annealing at 500 degrees Celsius. We demonstrate bipolar resistive switching behavior of the new device. Also we show that the variation of the conductance of the device is related to delay time of the applied input voltage sweep.\",\"PeriodicalId\":169983,\"journal\":{\"name\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2016.7573608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2016.7573608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrathin 2D materials such as TiO2, WOx, NiO, ZnO, VO2 and graphene, offer scope for low power, highly dense and ultra-fast electronic devices. Due to their extraordinary physical and electrical/electronic property. In this work, a novel forming free memristor has been realized based on hybrid film of ZnO-rGO. The structure of the device is Metal-Insulator-Metal structure, where the Zinc Oxide- Reduced Graphene Oxide (ZnO-rGO) thin film is sandwiched between Silver (Ag) and Fluorine-doped tin oxide (FTO) coated glass. Free oxygen vacancies were created within the composite film by using high temperature annealing at 500 degrees Celsius. We demonstrate bipolar resistive switching behavior of the new device. Also we show that the variation of the conductance of the device is related to delay time of the applied input voltage sweep.