限时:选择性传输,用于低能生理监测

Tao-Yi Lee, Khuong Vo, Wongi Baek, M. Khine, N. Dutt
{"title":"限时:选择性传输,用于低能生理监测","authors":"Tao-Yi Lee, Khuong Vo, Wongi Baek, M. Khine, N. Dutt","doi":"10.1145/3370748.3406563","DOIUrl":null,"url":null,"abstract":"Noninvasive, and continuous physiological sensing enabled by novel wearable sensors is generating unprecedented diagnostic insights in many medical practices. However, the limited battery capacity of these wearable sensors poses a critical challenge in extending device lifetime in order to prevent omission of informative events. In this work, we exploit the inherent sparsity of physiological signals to intelligently enable selective transmission of these signals and thereby improve the energy efficiency of wearable sensors. We propose STINT, a selective transmission framework that generates a sparse representation of the raw signal based on domain-specific knowledge, and which can be integrated into a wide range of resource-constrained embedded sensing IoT platforms. STINT employs a neural network (NN) for selective transmission: the NN identifies, and transmits only the informative parts of the raw signal, thereby achieving low power operation. We validate STINT and establish its efficacy in the domain of IoT for energy-efficient physiological monitoring, by testing our framework on EcoBP - a novel miniaturized, and wireless continuous blood pressure sensor. Early experimental results on the EcoBP device demonstrate that the STINT-enabled EcoBP sensor outperforms the native platform by 14% of sensor energy consumption, with room for additional energy savings via complementary bluetooth and wireless optimizations.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"STINT: selective transmission for low-energy physiological monitoring\",\"authors\":\"Tao-Yi Lee, Khuong Vo, Wongi Baek, M. Khine, N. Dutt\",\"doi\":\"10.1145/3370748.3406563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noninvasive, and continuous physiological sensing enabled by novel wearable sensors is generating unprecedented diagnostic insights in many medical practices. However, the limited battery capacity of these wearable sensors poses a critical challenge in extending device lifetime in order to prevent omission of informative events. In this work, we exploit the inherent sparsity of physiological signals to intelligently enable selective transmission of these signals and thereby improve the energy efficiency of wearable sensors. We propose STINT, a selective transmission framework that generates a sparse representation of the raw signal based on domain-specific knowledge, and which can be integrated into a wide range of resource-constrained embedded sensing IoT platforms. STINT employs a neural network (NN) for selective transmission: the NN identifies, and transmits only the informative parts of the raw signal, thereby achieving low power operation. We validate STINT and establish its efficacy in the domain of IoT for energy-efficient physiological monitoring, by testing our framework on EcoBP - a novel miniaturized, and wireless continuous blood pressure sensor. Early experimental results on the EcoBP device demonstrate that the STINT-enabled EcoBP sensor outperforms the native platform by 14% of sensor energy consumption, with room for additional energy savings via complementary bluetooth and wireless optimizations.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由新型可穿戴传感器实现的无创、连续的生理传感在许多医疗实践中产生了前所未有的诊断见解。然而,这些可穿戴传感器的电池容量有限,在延长设备寿命以防止遗漏信息事件方面提出了关键挑战。在这项工作中,我们利用生理信号固有的稀疏性来智能地实现这些信号的选择性传输,从而提高可穿戴传感器的能量效率。我们提出了一个选择性传输框架,它基于特定领域的知识生成原始信号的稀疏表示,并且可以集成到广泛的资源受限的嵌入式传感物联网平台中。使用神经网络(NN)进行选择性传输:神经网络识别并只传输原始信号的信息部分,从而实现低功耗运行。通过在EcoBP(一种新型小型化无线连续血压传感器)上测试我们的框架,我们验证了在物联网领域对节能生理监测的有效性。EcoBP设备的早期实验结果表明,支持stint的EcoBP传感器比原生平台的传感器能耗低14%,并且通过补充蓝牙和无线优化可以节省额外的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STINT: selective transmission for low-energy physiological monitoring
Noninvasive, and continuous physiological sensing enabled by novel wearable sensors is generating unprecedented diagnostic insights in many medical practices. However, the limited battery capacity of these wearable sensors poses a critical challenge in extending device lifetime in order to prevent omission of informative events. In this work, we exploit the inherent sparsity of physiological signals to intelligently enable selective transmission of these signals and thereby improve the energy efficiency of wearable sensors. We propose STINT, a selective transmission framework that generates a sparse representation of the raw signal based on domain-specific knowledge, and which can be integrated into a wide range of resource-constrained embedded sensing IoT platforms. STINT employs a neural network (NN) for selective transmission: the NN identifies, and transmits only the informative parts of the raw signal, thereby achieving low power operation. We validate STINT and establish its efficacy in the domain of IoT for energy-efficient physiological monitoring, by testing our framework on EcoBP - a novel miniaturized, and wireless continuous blood pressure sensor. Early experimental results on the EcoBP device demonstrate that the STINT-enabled EcoBP sensor outperforms the native platform by 14% of sensor energy consumption, with room for additional energy savings via complementary bluetooth and wireless optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1