基于协同过滤的个性化音乐建议

A. Salunke, Ruchika Kukreja, Jayesh Kharche, Amit K. Nerurkar
{"title":"基于协同过滤的个性化音乐建议","authors":"A. Salunke, Ruchika Kukreja, Jayesh Kharche, Amit K. Nerurkar","doi":"10.18535/ijecs/v9i05.4487","DOIUrl":null,"url":null,"abstract":"With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personalized Suggestion For Music Based On Collaborative Filtering\",\"authors\":\"A. Salunke, Ruchika Kukreja, Jayesh Kharche, Amit K. Nerurkar\",\"doi\":\"10.18535/ijecs/v9i05.4487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/ijecs/v9i05.4487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v9i05.4487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着科技的进步,互联网上有数百万首歌曲可供选择,这给人们从大量歌曲中进行选择带来了问题。所以,应该有一些中间人必须代表用户完成这项任务,并呈现最符合用户口味的相关歌曲。该任务由推荐系统完成。音乐推荐系统根据用户的收听历史和个人资料预测用户对特定歌曲的喜好。目前可用的大多数音乐推荐系统都会将最近播放的歌曲或总体评分最高的歌曲作为建议提供给用户,但这些建议并不是个性化的。本文的目的是研究如何利用用户相似度的协同过滤来为每一个用户提供个性化的推荐。本文旨在实现这一思想,并在启动时使用基于内容的过滤来解决冷启动问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized Suggestion For Music Based On Collaborative Filtering
With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A FRAMEWORK FOR MANAGEMENT OF LEAKS AND EQUIPMENT FAILURE IN OIL WELLS Data-Driven Approach to Automated Lyric Generation Predictive Analytics for Demand Forecasting: A deep Learning-based Decision Support System A Model for Detection of Malwares on Edge Devices ENHANCE DOCUMENT VALIDATION UIPATH POWERED SIGNATURE VERIFICATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1