A. Salunke, Ruchika Kukreja, Jayesh Kharche, Amit K. Nerurkar
{"title":"基于协同过滤的个性化音乐建议","authors":"A. Salunke, Ruchika Kukreja, Jayesh Kharche, Amit K. Nerurkar","doi":"10.18535/ijecs/v9i05.4487","DOIUrl":null,"url":null,"abstract":"With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personalized Suggestion For Music Based On Collaborative Filtering\",\"authors\":\"A. Salunke, Ruchika Kukreja, Jayesh Kharche, Amit K. Nerurkar\",\"doi\":\"10.18535/ijecs/v9i05.4487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/ijecs/v9i05.4487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v9i05.4487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personalized Suggestion For Music Based On Collaborative Filtering
With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.