预测Web服务器异常的机器学习技术

M. Marinov, D. Avresky
{"title":"预测Web服务器异常的机器学习技术","authors":"M. Marinov, D. Avresky","doi":"10.1109/NCCA.2011.25","DOIUrl":null,"url":null,"abstract":"This paper describes an approach for identification of internal web server system anomalies affecting the quality of service. We assume that the problems are due to system resource starvation. We observe the response time of a web server while under various artificial workload. Simultaneously we collect data on several system resource parameters. Supervised machine learning based on regularization is done to correlate the high response time with observed system data. The research described is done with artificial workload, but we argue that the approach is applicable for any running web server. This type of analysis could be useful in web server, operating system or virtual machine rejuvenation.","PeriodicalId":244026,"journal":{"name":"2011 First International Symposium on Network Cloud Computing and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Techniques for Predicting Web Server Anomalies\",\"authors\":\"M. Marinov, D. Avresky\",\"doi\":\"10.1109/NCCA.2011.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach for identification of internal web server system anomalies affecting the quality of service. We assume that the problems are due to system resource starvation. We observe the response time of a web server while under various artificial workload. Simultaneously we collect data on several system resource parameters. Supervised machine learning based on regularization is done to correlate the high response time with observed system data. The research described is done with artificial workload, but we argue that the approach is applicable for any running web server. This type of analysis could be useful in web server, operating system or virtual machine rejuvenation.\",\"PeriodicalId\":244026,\"journal\":{\"name\":\"2011 First International Symposium on Network Cloud Computing and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 First International Symposium on Network Cloud Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCCA.2011.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Symposium on Network Cloud Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCCA.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种识别影响服务质量的内部web服务器系统异常的方法。我们假设这些问题是由于系统资源不足造成的。我们观察了web服务器在各种人工工作负载下的响应时间。同时,我们收集了几个系统资源参数的数据。基于正则化的监督式机器学习将高响应时间与观察到的系统数据关联起来。所描述的研究是在人工工作负载下完成的,但我们认为这种方法适用于任何正在运行的web服务器。这种类型的分析在web服务器、操作系统或虚拟机复兴中很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Techniques for Predicting Web Server Anomalies
This paper describes an approach for identification of internal web server system anomalies affecting the quality of service. We assume that the problems are due to system resource starvation. We observe the response time of a web server while under various artificial workload. Simultaneously we collect data on several system resource parameters. Supervised machine learning based on regularization is done to correlate the high response time with observed system data. The research described is done with artificial workload, but we argue that the approach is applicable for any running web server. This type of analysis could be useful in web server, operating system or virtual machine rejuvenation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Resource Management Based on Software Transactional Memory Cross-layer SLA Selection for Cloud Services A Remote Attestation Approach for a Secure Virtual Machine Migration in Federated Cloud Environments Internal Self-protecting for Consistency and Stability in an Autonomic Manager How Mobility Increases Mobile Cloud Computing Processing Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1