一个新颖的土耳其语自然语言处理工具,用于词干提取,形态标记和动词否定

{"title":"一个新颖的土耳其语自然语言处理工具,用于词干提取,形态标记和动词否定","authors":"","doi":"10.34028/iajit/18/2/3","DOIUrl":null,"url":null,"abstract":"GovdeTurk is a tool for stemming, morphological labeling and verb negation for Turkish language. We designed comprehensive finite automata to represent Turkish grammar rules. Based on these automata, GovdeTurk finds the stem of the word by removing the inflectional suffixes in a longest match strategy. Levenshtein Distance is used to correct spelling errors that may occur during suffix removal. Morphological labeling identifies the functionality of a given token. Nine different dictionaries are constructed for each specific word type. These dictionaries are used in the stemming and morphological labeling. Verb negation module is developed for lexicon based sentiment analysis. GovdeTurk is tested on a dataset of one million words. The results are compared with Zemberek and Turkish Snowball Algorithm. While the closest competitor, Zemberek, in the stemming step has an accuracy of 80%, GovdeTurk gives 97.3% of accuracy. Morphological labeling accuracy of GovdeTurk is 93.6%. With outperforming results, our model becomes foremost among its competitors","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GovdeTurk: A Novel Turkish Natural Language Processing Tool for Stemming, Morphological Labelling and Verb Negation\",\"authors\":\"\",\"doi\":\"10.34028/iajit/18/2/3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GovdeTurk is a tool for stemming, morphological labeling and verb negation for Turkish language. We designed comprehensive finite automata to represent Turkish grammar rules. Based on these automata, GovdeTurk finds the stem of the word by removing the inflectional suffixes in a longest match strategy. Levenshtein Distance is used to correct spelling errors that may occur during suffix removal. Morphological labeling identifies the functionality of a given token. Nine different dictionaries are constructed for each specific word type. These dictionaries are used in the stemming and morphological labeling. Verb negation module is developed for lexicon based sentiment analysis. GovdeTurk is tested on a dataset of one million words. The results are compared with Zemberek and Turkish Snowball Algorithm. While the closest competitor, Zemberek, in the stemming step has an accuracy of 80%, GovdeTurk gives 97.3% of accuracy. Morphological labeling accuracy of GovdeTurk is 93.6%. With outperforming results, our model becomes foremost among its competitors\",\"PeriodicalId\":161392,\"journal\":{\"name\":\"The International Arab Journal of Information Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Arab Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/iajit/18/2/3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/18/2/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

GovdeTurk是一个土耳其语词干提取、词形标注和动词否定工具。我们设计了全面的有限自动机来表示土耳其语法规则。基于这些自动机,GovdeTurk通过在最长匹配策略中去除屈折后缀来找到单词的词干。Levenshtein Distance用于纠正后缀删除过程中可能出现的拼写错误。形态标记识别给定标记的功能。为每个特定的单词类型构建了9个不同的字典。这些词典用于词干提取和词法标注。针对基于词汇的情感分析,开发了动词否定模块。GovdeTurk在100万个单词的数据集上进行了测试。结果与Zemberek算法和土耳其雪球算法进行了比较。虽然最接近的竞争对手Zemberek在词干步骤中的准确率为80%,但GovdeTurk的准确率为97.3%。godeturk的形态学标注准确率为93.6%。我们的模型表现优异,在竞争对手中名列前茅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GovdeTurk: A Novel Turkish Natural Language Processing Tool for Stemming, Morphological Labelling and Verb Negation
GovdeTurk is a tool for stemming, morphological labeling and verb negation for Turkish language. We designed comprehensive finite automata to represent Turkish grammar rules. Based on these automata, GovdeTurk finds the stem of the word by removing the inflectional suffixes in a longest match strategy. Levenshtein Distance is used to correct spelling errors that may occur during suffix removal. Morphological labeling identifies the functionality of a given token. Nine different dictionaries are constructed for each specific word type. These dictionaries are used in the stemming and morphological labeling. Verb negation module is developed for lexicon based sentiment analysis. GovdeTurk is tested on a dataset of one million words. The results are compared with Zemberek and Turkish Snowball Algorithm. While the closest competitor, Zemberek, in the stemming step has an accuracy of 80%, GovdeTurk gives 97.3% of accuracy. Morphological labeling accuracy of GovdeTurk is 93.6%. With outperforming results, our model becomes foremost among its competitors
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples* Scrupulous SCGAN Framework for Recognition of Restored Images with Caffe based PCA Filtration Fuzzy Heuristics for Detecting and Preventing Black Hole Attack XAI-PDF: A Robust Framework for Malicious PDF Detection Leveraging SHAP-Based Feature Engineering Healthcare Data Security in Cloud Storage Using Light Weight Symmetric Key Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1