α-Fe2O3纳米分散环氧复合材料的制备与表征

M. A. Mamun, Md. Abdus Sabur, M. Gafur, Hrithita Aftab, G. Rahman
{"title":"α-Fe2O3纳米分散环氧复合材料的制备与表征","authors":"M. A. Mamun, Md. Abdus Sabur, M. Gafur, Hrithita Aftab, G. Rahman","doi":"10.38032/jea.2021.02.005","DOIUrl":null,"url":null,"abstract":"Hematite(α-Fe2O3) nanoparticles were synthesized by sol-gel process and further mixed with epoxy resin to obtain the nanocomposites. X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analysis revealed that α-Fe2O3 nanoparticles have an average diameter of about 30 nm, also illustrated the crystal structure and morphology of the nanomaterials. Fourier-Transform Infrared spectroscopy (FTIR) showed the functional groups that were present in α-Fe2O3 nanoparticles, neat epoxy andα-Fe2O3/epoxy nanocomposites. Vibrating Sample Magnetometer (VSM) analysis exhibits the magnetic hysteresis curve and revealed that α-Fe2O3 nanoparticles were superparamagnetic. Tensile testing was performed to obtain the tensile strength, yield strength, elongation, young modulus and required energy to deform the materials. Vickers micro-hardness test showed the surface hardness of the nanocomposites. Flexural strength also measured, which indicate the strength of nanocomposites against bending. Thermogravimetric Analysis (TGA) measurement showed the thermal properties of α-Fe2O3 nanoparticles and its influence into the epoxy matrix. UV-Vis spectroscopy was performed to obtain the optical band gap energy of the nanocomposites.  DC-resistivity measurements showed a significant influence of α-Fe2O3 nanoparticles on the dc-electrical properties of the epoxy matrix.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fabrication and Characterization of α-Fe2O3 Nanoparticles Dispersed Epoxy Nanocomposites\",\"authors\":\"M. A. Mamun, Md. Abdus Sabur, M. Gafur, Hrithita Aftab, G. Rahman\",\"doi\":\"10.38032/jea.2021.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematite(α-Fe2O3) nanoparticles were synthesized by sol-gel process and further mixed with epoxy resin to obtain the nanocomposites. X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analysis revealed that α-Fe2O3 nanoparticles have an average diameter of about 30 nm, also illustrated the crystal structure and morphology of the nanomaterials. Fourier-Transform Infrared spectroscopy (FTIR) showed the functional groups that were present in α-Fe2O3 nanoparticles, neat epoxy andα-Fe2O3/epoxy nanocomposites. Vibrating Sample Magnetometer (VSM) analysis exhibits the magnetic hysteresis curve and revealed that α-Fe2O3 nanoparticles were superparamagnetic. Tensile testing was performed to obtain the tensile strength, yield strength, elongation, young modulus and required energy to deform the materials. Vickers micro-hardness test showed the surface hardness of the nanocomposites. Flexural strength also measured, which indicate the strength of nanocomposites against bending. Thermogravimetric Analysis (TGA) measurement showed the thermal properties of α-Fe2O3 nanoparticles and its influence into the epoxy matrix. UV-Vis spectroscopy was performed to obtain the optical band gap energy of the nanocomposites.  DC-resistivity measurements showed a significant influence of α-Fe2O3 nanoparticles on the dc-electrical properties of the epoxy matrix.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2021.02.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2021.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用溶胶-凝胶法制备了赤铁矿(α-Fe2O3)纳米颗粒,并与环氧树脂混合制备了纳米复合材料。x射线衍射(XRD)和扫描电镜(SEM)分析表明,α-Fe2O3纳米颗粒的平均直径约为30 nm,并分析了纳米材料的晶体结构和形貌。傅里叶变换红外光谱(FTIR)显示α-Fe2O3纳米颗粒、纯环氧树脂和α-Fe2O3/环氧纳米复合材料中存在官能团。振动样品磁强计(VSM)分析显示α-Fe2O3纳米粒子具有超顺磁性。进行拉伸试验,获得材料的抗拉强度、屈服强度、伸长率、杨氏模量和变形所需能量。显微硬度测试显示了纳米复合材料的表面硬度。测试了纳米复合材料的抗弯曲强度。热重分析(TGA)显示了α-Fe2O3纳米颗粒的热性能及其对环氧树脂基体的影响。采用紫外可见光谱法测定了复合材料的带隙能。直流电阻率测试表明α-Fe2O3纳米颗粒对环氧树脂基体的直流电性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and Characterization of α-Fe2O3 Nanoparticles Dispersed Epoxy Nanocomposites
Hematite(α-Fe2O3) nanoparticles were synthesized by sol-gel process and further mixed with epoxy resin to obtain the nanocomposites. X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analysis revealed that α-Fe2O3 nanoparticles have an average diameter of about 30 nm, also illustrated the crystal structure and morphology of the nanomaterials. Fourier-Transform Infrared spectroscopy (FTIR) showed the functional groups that were present in α-Fe2O3 nanoparticles, neat epoxy andα-Fe2O3/epoxy nanocomposites. Vibrating Sample Magnetometer (VSM) analysis exhibits the magnetic hysteresis curve and revealed that α-Fe2O3 nanoparticles were superparamagnetic. Tensile testing was performed to obtain the tensile strength, yield strength, elongation, young modulus and required energy to deform the materials. Vickers micro-hardness test showed the surface hardness of the nanocomposites. Flexural strength also measured, which indicate the strength of nanocomposites against bending. Thermogravimetric Analysis (TGA) measurement showed the thermal properties of α-Fe2O3 nanoparticles and its influence into the epoxy matrix. UV-Vis spectroscopy was performed to obtain the optical band gap energy of the nanocomposites.  DC-resistivity measurements showed a significant influence of α-Fe2O3 nanoparticles on the dc-electrical properties of the epoxy matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depression Intensity Identification using Transformer Ensemble Technique for the Resource-constrained Bengali Language Numerical Analysis of Laminar Natural Convection Inside Enclosed Squared and Trapezoidal Cavities at Different Inclination Angles Design and Performance Analysis of Defected Ground Slotted Patch Antenna for Sub-6 GHz 5G Applications Development of a Weighted Productivity Model for a Food Processing Industry Optimal Tuning of a LQR Controlled Active Quarter Car System Using Global Best Inertia Weight Modified Particle Swarm Optimization Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1