调度优化问题的改进增强型稳态遗传算法

Shiburaj Pappu, K. Talele, K. Mehul
{"title":"调度优化问题的改进增强型稳态遗传算法","authors":"Shiburaj Pappu, K. Talele, K. Mehul","doi":"10.1109/INDCON.2013.6726018","DOIUrl":null,"url":null,"abstract":"Scheduling & Optimization problems are iterative in nature. To find a ideal solution to which is a complex task. These types of problems may be effectively solved and optimal solutions which may be close to the ideal solution may be derived with the help of evolutionary algorithms like the Genetic Algorithm. This paper introduces a new variant of genetic algorithm called Modified Enhanced Steady State Genetic Algorithm (MESSGA) which uses Fuzzy Logic on crossover probability, mutation probability and insertion, for better convergence time. The results of this paper are studied on a common scheduling problem faced by all universities to assign externals for viva-vose or examination to other colleges under its jurisdiction.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modified enhanced steady state genetic algorithm for Scheduling & Optimization problems\",\"authors\":\"Shiburaj Pappu, K. Talele, K. Mehul\",\"doi\":\"10.1109/INDCON.2013.6726018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling & Optimization problems are iterative in nature. To find a ideal solution to which is a complex task. These types of problems may be effectively solved and optimal solutions which may be close to the ideal solution may be derived with the help of evolutionary algorithms like the Genetic Algorithm. This paper introduces a new variant of genetic algorithm called Modified Enhanced Steady State Genetic Algorithm (MESSGA) which uses Fuzzy Logic on crossover probability, mutation probability and insertion, for better convergence time. The results of this paper are studied on a common scheduling problem faced by all universities to assign externals for viva-vose or examination to other colleges under its jurisdiction.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6726018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6726018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

调度和优化问题本质上是迭代的。找到一个理想的解决方案是一项复杂的任务。借助遗传算法等进化算法,可以有效地求解这类问题,并推导出接近理想解的最优解。本文介绍了一种改进的增强稳态遗传算法(MESSGA),该算法在交叉概率、突变概率和插入上使用模糊逻辑,以获得更好的收敛时间。本文的研究结果是所有大学都面临的一个常见的安排问题,即分配外部人员到其管辖的其他学院进行口试或考试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified enhanced steady state genetic algorithm for Scheduling & Optimization problems
Scheduling & Optimization problems are iterative in nature. To find a ideal solution to which is a complex task. These types of problems may be effectively solved and optimal solutions which may be close to the ideal solution may be derived with the help of evolutionary algorithms like the Genetic Algorithm. This paper introduces a new variant of genetic algorithm called Modified Enhanced Steady State Genetic Algorithm (MESSGA) which uses Fuzzy Logic on crossover probability, mutation probability and insertion, for better convergence time. The results of this paper are studied on a common scheduling problem faced by all universities to assign externals for viva-vose or examination to other colleges under its jurisdiction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of sleep mode operation with modified non-exhaustive vacation queuing Performance analysis of next generation 3-D OFDM based optical access networks under various system impairments Hardware realization of high speed elliptic curve point multiplication using multiple Point Doublers and point adders Lifetime of a CDMA wireless sensor network with route diversity RF based train collision avoidance system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1