手写体数字的综合分割与识别:分类算法的比较

Cheng-Lin Liu, H. Sako, H. Fujisawa
{"title":"手写体数字的综合分割与识别:分类算法的比较","authors":"Cheng-Lin Liu, H. Sako, H. Fujisawa","doi":"10.1109/IWFHR.2002.1030927","DOIUrl":null,"url":null,"abstract":"In integrated segmentation and recognition (ISR) of handwritten character strings, the underlying classifier is desired to be accurate in character classification and resistant to non-character patterns (also called garbage or outliers). This paper compares the performance of a number of statistical and neural classifiers in ISR. Each classifier has some variations depending on learning method: maximum likelihood estimation (MLE), discriminative learning (DL) under the minimum square error (MSE) or minimum classification error (MCE) criterion, or enhanced DL (EDL) with outlier samples. A heuristic pre-segmentation method is proposed to generate candidate cuts and character patterns. The methods were tested on the 5-digit Zip code images in CEDAR CDROM-1. The results show that training with outliers is crucial for neural classifiers in ISR. The best result was given by the learning quadratic discriminant function (LQDF) classifier.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Integrated segmentation and recognition of handwritten numerals: comparison of classification algorithms\",\"authors\":\"Cheng-Lin Liu, H. Sako, H. Fujisawa\",\"doi\":\"10.1109/IWFHR.2002.1030927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In integrated segmentation and recognition (ISR) of handwritten character strings, the underlying classifier is desired to be accurate in character classification and resistant to non-character patterns (also called garbage or outliers). This paper compares the performance of a number of statistical and neural classifiers in ISR. Each classifier has some variations depending on learning method: maximum likelihood estimation (MLE), discriminative learning (DL) under the minimum square error (MSE) or minimum classification error (MCE) criterion, or enhanced DL (EDL) with outlier samples. A heuristic pre-segmentation method is proposed to generate candidate cuts and character patterns. The methods were tested on the 5-digit Zip code images in CEDAR CDROM-1. The results show that training with outliers is crucial for neural classifiers in ISR. The best result was given by the learning quadratic discriminant function (LQDF) classifier.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在手写体字符串的集成分割和识别(ISR)中,底层分类器需要准确的字符分类,并且能够抵抗非字符模式(也称为垃圾或异常值)。本文比较了ISR中几种统计分类器和神经分类器的性能。根据学习方法的不同,每个分类器都有一些变化:最大似然估计(MLE),最小平方误差(MSE)或最小分类误差(MCE)标准下的判别学习(DL),或带有离群样本的增强DL (EDL)。提出了一种启发式预分割方法来生成候选切口和字符模式。在CEDAR CDROM-1中的5位邮政编码图像上进行了测试。结果表明,异常值训练对ISR中的神经分类器至关重要。学习二次判别函数(LQDF)分类器给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated segmentation and recognition of handwritten numerals: comparison of classification algorithms
In integrated segmentation and recognition (ISR) of handwritten character strings, the underlying classifier is desired to be accurate in character classification and resistant to non-character patterns (also called garbage or outliers). This paper compares the performance of a number of statistical and neural classifiers in ISR. Each classifier has some variations depending on learning method: maximum likelihood estimation (MLE), discriminative learning (DL) under the minimum square error (MSE) or minimum classification error (MCE) criterion, or enhanced DL (EDL) with outlier samples. A heuristic pre-segmentation method is proposed to generate candidate cuts and character patterns. The methods were tested on the 5-digit Zip code images in CEDAR CDROM-1. The results show that training with outliers is crucial for neural classifiers in ISR. The best result was given by the learning quadratic discriminant function (LQDF) classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1