{"title":"非负矩阵分解的散度","authors":"Jbari Olaya, Chakkor Otman","doi":"10.1109/ICDATA52997.2021.00013","DOIUrl":null,"url":null,"abstract":"The beta-divergences has been largely used in the machine learning literature. In this paper, we will go into detail about what they are, where they come from, their relation with Bregman divergence, and why they are so useful in many machine learning algorithms. In particular, Nonnegative Matrix Factorization (NMF), witch we presented as an example using Majorization-Minimization approach.","PeriodicalId":231714,"journal":{"name":"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beta-divergence for Nonnegative Matrix Factorization\",\"authors\":\"Jbari Olaya, Chakkor Otman\",\"doi\":\"10.1109/ICDATA52997.2021.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The beta-divergences has been largely used in the machine learning literature. In this paper, we will go into detail about what they are, where they come from, their relation with Bregman divergence, and why they are so useful in many machine learning algorithms. In particular, Nonnegative Matrix Factorization (NMF), witch we presented as an example using Majorization-Minimization approach.\",\"PeriodicalId\":231714,\"journal\":{\"name\":\"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDATA52997.2021.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDATA52997.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

beta散度在机器学习文献中被大量使用。在本文中,我们将详细介绍它们是什么,它们来自哪里,它们与Bregman散度的关系,以及为什么它们在许多机器学习算法中如此有用。特别是非负矩阵分解(NMF),我们将其作为使用最大化-最小化方法的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beta-divergence for Nonnegative Matrix Factorization
The beta-divergences has been largely used in the machine learning literature. In this paper, we will go into detail about what they are, where they come from, their relation with Bregman divergence, and why they are so useful in many machine learning algorithms. In particular, Nonnegative Matrix Factorization (NMF), witch we presented as an example using Majorization-Minimization approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extended T-Type Topology of Single-Phase Multi-Level Inverter Sentiment analysis through word embedding using AraBERT: Moroccan dialect use case Contribution to improving the conditions of access to very high speed 5G internet for online education in developing African countries Direct Torque Control for Induction Motor A Survey of Spam Bots Detection in Online Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1