M. Goldberg, J. Greenman, B. Gutting, M. Magdon-Ismail, J. Schwartz, W. Wallace
{"title":"超越文本的图形搜索:语义超链接数据中的关系搜索","authors":"M. Goldberg, J. Greenman, B. Gutting, M. Magdon-Ismail, J. Schwartz, W. Wallace","doi":"10.1109/ISI.2012.6284276","DOIUrl":null,"url":null,"abstract":"We present novel indexing and searching schemes for semantic graphs based on the notion of the i.degrees of a node. The i.degrees allow searches performed on the graph to use “type” and connection information, rather than textual labels, to identify nodes. We aim to identify a network graph (fragment) within a large semantic graph (database). A fragment may represent incomplete information that a researcher has collected on a sub-network of interest. While textual labels might be available, they are highly unreliable, and cannot be used for identification of hidden networks. Since this problem comes from the classically NP-hard problem of identifying isomorphic subgraphs, our algorithms are heuristic.","PeriodicalId":199734,"journal":{"name":"2012 IEEE International Conference on Intelligence and Security Informatics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph search beyond text: Relational searches in semantic hyperlinked data\",\"authors\":\"M. Goldberg, J. Greenman, B. Gutting, M. Magdon-Ismail, J. Schwartz, W. Wallace\",\"doi\":\"10.1109/ISI.2012.6284276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present novel indexing and searching schemes for semantic graphs based on the notion of the i.degrees of a node. The i.degrees allow searches performed on the graph to use “type” and connection information, rather than textual labels, to identify nodes. We aim to identify a network graph (fragment) within a large semantic graph (database). A fragment may represent incomplete information that a researcher has collected on a sub-network of interest. While textual labels might be available, they are highly unreliable, and cannot be used for identification of hidden networks. Since this problem comes from the classically NP-hard problem of identifying isomorphic subgraphs, our algorithms are heuristic.\",\"PeriodicalId\":199734,\"journal\":{\"name\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2012.6284276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2012.6284276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph search beyond text: Relational searches in semantic hyperlinked data
We present novel indexing and searching schemes for semantic graphs based on the notion of the i.degrees of a node. The i.degrees allow searches performed on the graph to use “type” and connection information, rather than textual labels, to identify nodes. We aim to identify a network graph (fragment) within a large semantic graph (database). A fragment may represent incomplete information that a researcher has collected on a sub-network of interest. While textual labels might be available, they are highly unreliable, and cannot be used for identification of hidden networks. Since this problem comes from the classically NP-hard problem of identifying isomorphic subgraphs, our algorithms are heuristic.