负二项式对数混合模型

J. Booth, G. Casella, H. Friedl, J. Hobert
{"title":"负二项式对数混合模型","authors":"J. Booth, G. Casella, H. Friedl, J. Hobert","doi":"10.1191/1471082X03st058oa","DOIUrl":null,"url":null,"abstract":"The Poisson loglinear model is a common choice for explaining variability in counts. However, in many practical circumstances the restriction that the mean and variance are equal is not realistic. Overdispersion with respect to the Poisson distribution can be modeled explicitly by integrating with respect to a mixture distribution, and use of the conjugate gamma mixing distribution leads to a negative binomial loglinear model. This paper extends the negative binomial loglinear model to the case of dependent counts, where dependence among the counts is handled by including linear combinations of random effects in the linear predictor. If we assume that the vector of random effects is multivariate normal, then complex forms of dependence can be modelled by appropriate specification of the covariance structure. Although the likelihood function for the resulting model is not tractable, maximum likelihood estimates (and standard errors) can be found using the NLMIXED procedure in SAS or, in more complicated examples, using a Monte Carlo EM algorithm. An alternate approach is to leave the random effects completely unspecified and attempt to estimate them using nonparametric maximum likelihood. The methodologies are illustrated with several examples.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"Negative binomial loglinear mixed models\",\"authors\":\"J. Booth, G. Casella, H. Friedl, J. Hobert\",\"doi\":\"10.1191/1471082X03st058oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Poisson loglinear model is a common choice for explaining variability in counts. However, in many practical circumstances the restriction that the mean and variance are equal is not realistic. Overdispersion with respect to the Poisson distribution can be modeled explicitly by integrating with respect to a mixture distribution, and use of the conjugate gamma mixing distribution leads to a negative binomial loglinear model. This paper extends the negative binomial loglinear model to the case of dependent counts, where dependence among the counts is handled by including linear combinations of random effects in the linear predictor. If we assume that the vector of random effects is multivariate normal, then complex forms of dependence can be modelled by appropriate specification of the covariance structure. Although the likelihood function for the resulting model is not tractable, maximum likelihood estimates (and standard errors) can be found using the NLMIXED procedure in SAS or, in more complicated examples, using a Monte Carlo EM algorithm. An alternate approach is to leave the random effects completely unspecified and attempt to estimate them using nonparametric maximum likelihood. The methodologies are illustrated with several examples.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X03st058oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st058oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

摘要

泊松对数模型是解释计数变异性的常用选择。然而,在许多实际情况下,均值和方差相等的限制是不现实的。关于泊松分布的过色散可以通过对混合分布的积分来明确地建模,并且使用共轭伽马混合分布导致负二项对数线性模型。本文将负二项对数线性模型推广到计数相关的情况,其中计数之间的相关性通过在线性预测器中包含随机效应的线性组合来处理。如果我们假设随机效应的向量是多元正态的,那么复杂的依赖形式可以通过适当的协方差结构来建模。尽管结果模型的似然函数难以处理,但可以使用SAS中的NLMIXED过程找到最大似然估计(和标准误差),或者在更复杂的示例中,使用蒙特卡罗EM算法。另一种方法是完全不指定随机效应,并尝试使用非参数最大似然来估计它们。用几个例子说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Negative binomial loglinear mixed models
The Poisson loglinear model is a common choice for explaining variability in counts. However, in many practical circumstances the restriction that the mean and variance are equal is not realistic. Overdispersion with respect to the Poisson distribution can be modeled explicitly by integrating with respect to a mixture distribution, and use of the conjugate gamma mixing distribution leads to a negative binomial loglinear model. This paper extends the negative binomial loglinear model to the case of dependent counts, where dependence among the counts is handled by including linear combinations of random effects in the linear predictor. If we assume that the vector of random effects is multivariate normal, then complex forms of dependence can be modelled by appropriate specification of the covariance structure. Although the likelihood function for the resulting model is not tractable, maximum likelihood estimates (and standard errors) can be found using the NLMIXED procedure in SAS or, in more complicated examples, using a Monte Carlo EM algorithm. An alternate approach is to leave the random effects completely unspecified and attempt to estimate them using nonparametric maximum likelihood. The methodologies are illustrated with several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1