扫描雷达角超分辨功率谱密度估计方法的优点与挑战

Yue Wang, Yongchao Zhang, Yulin Huang, Wenchao Li, Jianyu Yang, Haiguang Yang
{"title":"扫描雷达角超分辨功率谱密度估计方法的优点与挑战","authors":"Yue Wang, Yongchao Zhang, Yulin Huang, Wenchao Li, Jianyu Yang, Haiguang Yang","doi":"10.1109/IGARSS.2015.7326171","DOIUrl":null,"url":null,"abstract":"The angular superresolution is of great significance for scanning radar in forward-looking imaging. There are many techniques documented in literature to enhance the angular resolution, of which deconvolution method and power spectral density(PSD)methods are favored and attain many interests. In this paper, we focus on analyzing the advantages and challenges of PSD methods in comparison with the deconvolution method. Firstly, three typical PSD estimation approaches are introduced, followed with the comparison with deconvo-lution method that summarizes the advantages and challenges of PSD methods in theory. Simulations are provided in terms of coherence and number of snapshots, which presents the performance of different PSD methods and Lucy-Richardson deconvolution method, better demonstrating the advantages and challenges of PSD methods.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advantages and challenges of power spectral density estimation methods for scanning radar angular superresolution\",\"authors\":\"Yue Wang, Yongchao Zhang, Yulin Huang, Wenchao Li, Jianyu Yang, Haiguang Yang\",\"doi\":\"10.1109/IGARSS.2015.7326171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The angular superresolution is of great significance for scanning radar in forward-looking imaging. There are many techniques documented in literature to enhance the angular resolution, of which deconvolution method and power spectral density(PSD)methods are favored and attain many interests. In this paper, we focus on analyzing the advantages and challenges of PSD methods in comparison with the deconvolution method. Firstly, three typical PSD estimation approaches are introduced, followed with the comparison with deconvo-lution method that summarizes the advantages and challenges of PSD methods in theory. Simulations are provided in terms of coherence and number of snapshots, which presents the performance of different PSD methods and Lucy-Richardson deconvolution method, better demonstrating the advantages and challenges of PSD methods.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7326171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

角超分辨率对扫描雷达前视成像具有重要意义。提高角分辨率的方法有很多,其中反褶积法和功率谱密度法(PSD)得到了广泛的关注。在本文中,我们重点分析了PSD方法与反卷积方法的优势和挑战。首先介绍了三种典型的PSD估计方法,然后与反卷积方法进行了比较,总结了PSD方法在理论上的优点和挑战。从相干性和快照数量两个方面进行了仿真,比较了不同的PSD方法和Lucy-Richardson反卷积方法的性能,更好地展示了PSD方法的优势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advantages and challenges of power spectral density estimation methods for scanning radar angular superresolution
The angular superresolution is of great significance for scanning radar in forward-looking imaging. There are many techniques documented in literature to enhance the angular resolution, of which deconvolution method and power spectral density(PSD)methods are favored and attain many interests. In this paper, we focus on analyzing the advantages and challenges of PSD methods in comparison with the deconvolution method. Firstly, three typical PSD estimation approaches are introduced, followed with the comparison with deconvo-lution method that summarizes the advantages and challenges of PSD methods in theory. Simulations are provided in terms of coherence and number of snapshots, which presents the performance of different PSD methods and Lucy-Richardson deconvolution method, better demonstrating the advantages and challenges of PSD methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1