{"title":"地质不确定性条件下储层建模的熵驱动粒子群优化——在裂缝性储层中的应用","authors":"B. Steffens, V. Demyanov, D. Arnold, H. Lewis","doi":"10.3997/2214-4609.202113321","DOIUrl":null,"url":null,"abstract":"Summary In this work we introduce a novel reservoir modelling workflow where modelling is assisted by an entropy-driven particle swarm optimizer. Producing a representative range of reservoir models that cover geological uncertainties in an effective way is a challenging task. We therefore make use of entropy to ensure that the ensemble of generated models adequately reflects the available information and provides diversity that reflects the associated variability in fluid flow behavior. The workflow is tested on a synthetic case study of a fractured reservoir. The results indicate that the entropy-driven PSO is able to prevent the diversity of the ensemble of models from collapsing whilst staying within the bounds of a predefined expected dynamic flow response. It is also shown that the entropy-driven PSO outperforms a standard PSO in this task. Secondary outcomes from the workflow, such as a spatial entropy map, provide a great tool for further uncertainty assessment and can be used to identify swept or unswept reservoir regions and the regions where more information is needed to reduce the uncertainty.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-driven particle swarm optimization for reservoir modelling under geological uncertainty – application to a fractured reservoir\",\"authors\":\"B. Steffens, V. Demyanov, D. Arnold, H. Lewis\",\"doi\":\"10.3997/2214-4609.202113321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this work we introduce a novel reservoir modelling workflow where modelling is assisted by an entropy-driven particle swarm optimizer. Producing a representative range of reservoir models that cover geological uncertainties in an effective way is a challenging task. We therefore make use of entropy to ensure that the ensemble of generated models adequately reflects the available information and provides diversity that reflects the associated variability in fluid flow behavior. The workflow is tested on a synthetic case study of a fractured reservoir. The results indicate that the entropy-driven PSO is able to prevent the diversity of the ensemble of models from collapsing whilst staying within the bounds of a predefined expected dynamic flow response. It is also shown that the entropy-driven PSO outperforms a standard PSO in this task. Secondary outcomes from the workflow, such as a spatial entropy map, provide a great tool for further uncertainty assessment and can be used to identify swept or unswept reservoir regions and the regions where more information is needed to reduce the uncertainty.\",\"PeriodicalId\":265130,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202113321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202113321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entropy-driven particle swarm optimization for reservoir modelling under geological uncertainty – application to a fractured reservoir
Summary In this work we introduce a novel reservoir modelling workflow where modelling is assisted by an entropy-driven particle swarm optimizer. Producing a representative range of reservoir models that cover geological uncertainties in an effective way is a challenging task. We therefore make use of entropy to ensure that the ensemble of generated models adequately reflects the available information and provides diversity that reflects the associated variability in fluid flow behavior. The workflow is tested on a synthetic case study of a fractured reservoir. The results indicate that the entropy-driven PSO is able to prevent the diversity of the ensemble of models from collapsing whilst staying within the bounds of a predefined expected dynamic flow response. It is also shown that the entropy-driven PSO outperforms a standard PSO in this task. Secondary outcomes from the workflow, such as a spatial entropy map, provide a great tool for further uncertainty assessment and can be used to identify swept or unswept reservoir regions and the regions where more information is needed to reduce the uncertainty.