传统巴布亚乐器的分类方法采用了一种转移学习和增强数据的方法

Amat Solihin, Dadan Mulyana, Mesra Betty Yel
{"title":"传统巴布亚乐器的分类方法采用了一种转移学习和增强数据的方法","authors":"Amat Solihin, Dadan Mulyana, Mesra Betty Yel","doi":"10.47970/siskom-kb.v5i2.279","DOIUrl":null,"url":null,"abstract":"Papua merupakan sebuah pulau yang terletak di sebelah utara Australia dan merupakan bagian dari wilayah timur Indonesia yang sebagian besar daratannya masih berupa hutan belantara dan merupakan pulau terbesar kedua di dunia setelah Greenland. Papua terkenal akan aneka budayanya, termasuk kekayaan alat musik. Ada berbagai jenis alat musik tradisional Papua yang menawan dan memiliki sejarah musik tradisional mendalam dibaliknya. Alat musik ini biasa digunakan untuk mengiringi acara adat maupun pesta. Perkembangan teknologi saat ini dan di tengah perkembangan musik kontemporer di Papua, ada kegelisahaan akan hilangnya musik-musik tradisi yang sangat kaya beragam sesuai kebudayaan masing-masing wilayah di Papua. Oleh karena itu, peneliti membuat program pengenalan citra alat musik tradisional Papua menggunakan metode Transfer Learning, yang merupakan metode dari Convolutional Neural Network yang merupakan operasi konvolusi dengan melatih terlebih dahulu pada model sebelumnya yang kemudian menggabungkan beberapa lapisan pemrosesan, menggunakan beberapa elemen yang bergerak secara paralel dan terinspirasi oleh sistem saraf biologis. Citra alat musik Papua yang digunakan adalah Fue, Pikon, Triton, Yi dan Tifa. Implementasi pengenalan citra ini dilakukan dengan memanfaatkan Pre-Trained model dari DenseNet201 yang berjalan pada aplikasi Google Collaboratory dan Tensorflow. Dataset yang digunakan dalam pengujian sebanyak 979 data training dan 143 data testing yang mengahasilkan nilai evaluasi dengan nilai precision 98%, recall 98%, f1-score 98%, accuracy 98,46% dan loss 0.051.","PeriodicalId":104889,"journal":{"name":"Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan)","volume":"R-24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Jenis Alat Musik Tradisional Papua menggunakan Metode Transfer Learning dan Data Augmentasi\",\"authors\":\"Amat Solihin, Dadan Mulyana, Mesra Betty Yel\",\"doi\":\"10.47970/siskom-kb.v5i2.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Papua merupakan sebuah pulau yang terletak di sebelah utara Australia dan merupakan bagian dari wilayah timur Indonesia yang sebagian besar daratannya masih berupa hutan belantara dan merupakan pulau terbesar kedua di dunia setelah Greenland. Papua terkenal akan aneka budayanya, termasuk kekayaan alat musik. Ada berbagai jenis alat musik tradisional Papua yang menawan dan memiliki sejarah musik tradisional mendalam dibaliknya. Alat musik ini biasa digunakan untuk mengiringi acara adat maupun pesta. Perkembangan teknologi saat ini dan di tengah perkembangan musik kontemporer di Papua, ada kegelisahaan akan hilangnya musik-musik tradisi yang sangat kaya beragam sesuai kebudayaan masing-masing wilayah di Papua. Oleh karena itu, peneliti membuat program pengenalan citra alat musik tradisional Papua menggunakan metode Transfer Learning, yang merupakan metode dari Convolutional Neural Network yang merupakan operasi konvolusi dengan melatih terlebih dahulu pada model sebelumnya yang kemudian menggabungkan beberapa lapisan pemrosesan, menggunakan beberapa elemen yang bergerak secara paralel dan terinspirasi oleh sistem saraf biologis. Citra alat musik Papua yang digunakan adalah Fue, Pikon, Triton, Yi dan Tifa. Implementasi pengenalan citra ini dilakukan dengan memanfaatkan Pre-Trained model dari DenseNet201 yang berjalan pada aplikasi Google Collaboratory dan Tensorflow. Dataset yang digunakan dalam pengujian sebanyak 979 data training dan 143 data testing yang mengahasilkan nilai evaluasi dengan nilai precision 98%, recall 98%, f1-score 98%, accuracy 98,46% dan loss 0.051.\",\"PeriodicalId\":104889,\"journal\":{\"name\":\"Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan)\",\"volume\":\"R-24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47970/siskom-kb.v5i2.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47970/siskom-kb.v5i2.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巴布亚是澳大利亚北部的一个岛屿,是印度尼西亚东部大部分地区的荒野,是自格陵兰岛以来世界第二大岛屿。巴布亚以其文化而闻名,包括乐器的财富。巴布亚有各种各样迷人的传统乐器,其背后有着悠久的传统音乐历史。这种乐器在传统场合和聚会上都很常见。随着新技术的发展和巴布亚当代音乐的发展,人们对失去高度丰富的传统感到不安。因此,研究人员让传统乐器图像识别程序采用的方法学习转移,是巴布亚是konvolusi手术的神经Convolutional Network)的模型训练先处理然后结合了几层的以前,使用一些平行移动的元素生物和神经系统的启发。巴布亚乐器的形象是富埃、皮康、特里顿、易和蒂法。这一形象介绍的实施是利用谷歌collab atory和Tensorflow的培训前模型实现的。用于测试979份培训数据和143份测试数据,结果的评估值为98%的准确值,98%的作业作业,准确程度为98.46%,失051。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Klasifikasi Jenis Alat Musik Tradisional Papua menggunakan Metode Transfer Learning dan Data Augmentasi
Papua merupakan sebuah pulau yang terletak di sebelah utara Australia dan merupakan bagian dari wilayah timur Indonesia yang sebagian besar daratannya masih berupa hutan belantara dan merupakan pulau terbesar kedua di dunia setelah Greenland. Papua terkenal akan aneka budayanya, termasuk kekayaan alat musik. Ada berbagai jenis alat musik tradisional Papua yang menawan dan memiliki sejarah musik tradisional mendalam dibaliknya. Alat musik ini biasa digunakan untuk mengiringi acara adat maupun pesta. Perkembangan teknologi saat ini dan di tengah perkembangan musik kontemporer di Papua, ada kegelisahaan akan hilangnya musik-musik tradisi yang sangat kaya beragam sesuai kebudayaan masing-masing wilayah di Papua. Oleh karena itu, peneliti membuat program pengenalan citra alat musik tradisional Papua menggunakan metode Transfer Learning, yang merupakan metode dari Convolutional Neural Network yang merupakan operasi konvolusi dengan melatih terlebih dahulu pada model sebelumnya yang kemudian menggabungkan beberapa lapisan pemrosesan, menggunakan beberapa elemen yang bergerak secara paralel dan terinspirasi oleh sistem saraf biologis. Citra alat musik Papua yang digunakan adalah Fue, Pikon, Triton, Yi dan Tifa. Implementasi pengenalan citra ini dilakukan dengan memanfaatkan Pre-Trained model dari DenseNet201 yang berjalan pada aplikasi Google Collaboratory dan Tensorflow. Dataset yang digunakan dalam pengujian sebanyak 979 data training dan 143 data testing yang mengahasilkan nilai evaluasi dengan nilai precision 98%, recall 98%, f1-score 98%, accuracy 98,46% dan loss 0.051.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perancangan Sistem Informasi Donasi Yayasan Cahaya Ummat Pamekasan Sistem Informasi Manajemen Administrasi Ikatan Pelajar Nahdlatul Ulama (IPNU) Ikatan Pelajar Putri Nahdlatul Ulama (IPPNU) Berbasis Website Perancangan Sistem Informasi Donor Darah Palang Merah Indonesia Prototype Sport Health Assistance Berbasis Internet Of Things Pengembangan E-Wamira Di Pamekasan Berbasis Website
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1