基于Zeonex的太赫兹区保偏振低损耗多孔芯光纤

Md. Anwar Sadath, M. Faisal, Mohammad S. Islam
{"title":"基于Zeonex的太赫兹区保偏振低损耗多孔芯光纤","authors":"Md. Anwar Sadath, M. Faisal, Mohammad S. Islam","doi":"10.1109/ICTP48844.2019.9041800","DOIUrl":null,"url":null,"abstract":"We proposed a novel Zeonex based ultra-high birefringent porous - core micro-structured fiber consisting of slotted cladding and hybrid core for THz wave guidance. FEM (Finite Element Method) is used with full-vector condition to investigate the wave guiding properties like birefringence, effective material loss, confinement loss, power fraction, dispersion, effective area and fiber nonlinearity having perfectly matched layer boundary. Addition of four circular holes (air) along with only three elliptical air holes in the core enhances the value of birefringence to 0.0818 with an effective material loss of only 0.0448 cm−1 and a confinement loss of 4×10−7 cm−1 at an operating frequency of 1 THz. Moreover, compact slotted geometry in the cladding imposes as high as 55.3% of total modal power to flow through the core air holes. Furthermore, a nearly flattened dispersion of 1.196±0.08 ps/THz/cm for a range of frequency (0.9-1.6THz) and fiber nonlinearity of 3.33×10−9 W−1 m−1 for an effective area of 1.32×105µm2 are obtained for x-polarized mode for the same operating frequency. This design can easily be fabricated exploiting the existing technology and would be suitable for polarization maintaining applications with a minimal absorption loss in the terahertz regime.","PeriodicalId":127575,"journal":{"name":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeonex Based Polarization Maintaining Low Loss Porous Core Fiber for Terahertz Regime\",\"authors\":\"Md. Anwar Sadath, M. Faisal, Mohammad S. Islam\",\"doi\":\"10.1109/ICTP48844.2019.9041800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a novel Zeonex based ultra-high birefringent porous - core micro-structured fiber consisting of slotted cladding and hybrid core for THz wave guidance. FEM (Finite Element Method) is used with full-vector condition to investigate the wave guiding properties like birefringence, effective material loss, confinement loss, power fraction, dispersion, effective area and fiber nonlinearity having perfectly matched layer boundary. Addition of four circular holes (air) along with only three elliptical air holes in the core enhances the value of birefringence to 0.0818 with an effective material loss of only 0.0448 cm−1 and a confinement loss of 4×10−7 cm−1 at an operating frequency of 1 THz. Moreover, compact slotted geometry in the cladding imposes as high as 55.3% of total modal power to flow through the core air holes. Furthermore, a nearly flattened dispersion of 1.196±0.08 ps/THz/cm for a range of frequency (0.9-1.6THz) and fiber nonlinearity of 3.33×10−9 W−1 m−1 for an effective area of 1.32×105µm2 are obtained for x-polarized mode for the same operating frequency. This design can easily be fabricated exploiting the existing technology and would be suitable for polarization maintaining applications with a minimal absorption loss in the terahertz regime.\",\"PeriodicalId\":127575,\"journal\":{\"name\":\"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTP48844.2019.9041800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTP48844.2019.9041800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新型的基于Zeonex的开槽包层和混合芯的超高双折射多孔芯微结构光纤,用于太赫兹波引导。采用全矢量条件下的有限元方法,研究了具有完全匹配层边界的双折射、有效材料损耗、约束损耗、功率分数、色散、有效面积和光纤非线性等导波特性。在工作频率为1thz时,增加4个圆孔(空气)和3个椭圆气孔将双折射值提高到0.0818,有效材料损耗仅为0.0448 cm−1,约束损耗为4×10−7 cm−1。此外,包层中紧凑的开槽几何结构使流过核心气孔的总模态功率高达55.3%。此外,在相同工作频率的x偏振模式下,在0.9 ~ 1.6THz频率范围内的色散为1.196±0.08 ps/THz/cm,光纤非线性为3.33×10−9 W−1 m−1,有效面积为1.32×105µm2。这种设计可以很容易地利用现有技术制造,并且适用于在太赫兹范围内具有最小吸收损耗的偏振保持应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zeonex Based Polarization Maintaining Low Loss Porous Core Fiber for Terahertz Regime
We proposed a novel Zeonex based ultra-high birefringent porous - core micro-structured fiber consisting of slotted cladding and hybrid core for THz wave guidance. FEM (Finite Element Method) is used with full-vector condition to investigate the wave guiding properties like birefringence, effective material loss, confinement loss, power fraction, dispersion, effective area and fiber nonlinearity having perfectly matched layer boundary. Addition of four circular holes (air) along with only three elliptical air holes in the core enhances the value of birefringence to 0.0818 with an effective material loss of only 0.0448 cm−1 and a confinement loss of 4×10−7 cm−1 at an operating frequency of 1 THz. Moreover, compact slotted geometry in the cladding imposes as high as 55.3% of total modal power to flow through the core air holes. Furthermore, a nearly flattened dispersion of 1.196±0.08 ps/THz/cm for a range of frequency (0.9-1.6THz) and fiber nonlinearity of 3.33×10−9 W−1 m−1 for an effective area of 1.32×105µm2 are obtained for x-polarized mode for the same operating frequency. This design can easily be fabricated exploiting the existing technology and would be suitable for polarization maintaining applications with a minimal absorption loss in the terahertz regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis and Comparison of Silicon and Silica Nanowire Based Biochemical Sensors Sensitivity Enhanced Surface Plasmon Resonance (SPR) Sensors with MoS2/Graphene Hybrid Overlayer Hollow-core Photonic Crystal Fiber Sensor for Refractive Index Sensing Fetal Arrhythmia Detection Using Fetal ECG Signal Performance Analysis of an OFDM Optical DQPSK FSO Link considering Strong Atmospheric Turbulence with Pointing Error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1