{"title":"复杂修辞学的简单信号:基于多特征支持向量模型的修辞学分析","authors":"D. Reitter","doi":"10.21248/jlcl.18.2003.26","DOIUrl":null,"url":null,"abstract":"Most text displays an internal coherence structure, which can be analyzed as a tree structure of relations that hold between short segments of text. We present a machinelearning governed approach to such an analysis in the framework of Rhetorical Structure Theory. Our rhetorical analyzer observes a variety of textual properties, such as cue phrases, part-of-speech information, rhetorical context and lexical chaining. A two-stage parsing algorithm uses local and global optimization to find an analysis. Decisions during parsing are driven by an ensemble of support vector classifiers. This training method allows for a non-linear separation of samples with many relevant features. We define a chain of annotation tools that profits from a new underspecified representation of rhetorical structure. Classifiers are trained on a newly introduced German language corpus, as well as on a large English one. We present evaluation data for the recognition of rhetorical relations.","PeriodicalId":346957,"journal":{"name":"LDV Forum","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Simple Signals for Complex Rhetorics: On Rhetorical Analysis with Rich-Feature Support Vector Models\",\"authors\":\"D. Reitter\",\"doi\":\"10.21248/jlcl.18.2003.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most text displays an internal coherence structure, which can be analyzed as a tree structure of relations that hold between short segments of text. We present a machinelearning governed approach to such an analysis in the framework of Rhetorical Structure Theory. Our rhetorical analyzer observes a variety of textual properties, such as cue phrases, part-of-speech information, rhetorical context and lexical chaining. A two-stage parsing algorithm uses local and global optimization to find an analysis. Decisions during parsing are driven by an ensemble of support vector classifiers. This training method allows for a non-linear separation of samples with many relevant features. We define a chain of annotation tools that profits from a new underspecified representation of rhetorical structure. Classifiers are trained on a newly introduced German language corpus, as well as on a large English one. We present evaluation data for the recognition of rhetorical relations.\",\"PeriodicalId\":346957,\"journal\":{\"name\":\"LDV Forum\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LDV Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.18.2003.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LDV Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.18.2003.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple Signals for Complex Rhetorics: On Rhetorical Analysis with Rich-Feature Support Vector Models
Most text displays an internal coherence structure, which can be analyzed as a tree structure of relations that hold between short segments of text. We present a machinelearning governed approach to such an analysis in the framework of Rhetorical Structure Theory. Our rhetorical analyzer observes a variety of textual properties, such as cue phrases, part-of-speech information, rhetorical context and lexical chaining. A two-stage parsing algorithm uses local and global optimization to find an analysis. Decisions during parsing are driven by an ensemble of support vector classifiers. This training method allows for a non-linear separation of samples with many relevant features. We define a chain of annotation tools that profits from a new underspecified representation of rhetorical structure. Classifiers are trained on a newly introduced German language corpus, as well as on a large English one. We present evaluation data for the recognition of rhetorical relations.