{"title":"一个浮点基数2共享除法/平方根芯片","authors":"H. Srinivas, K. Parhi","doi":"10.1109/ICCD.1995.528910","DOIUrl":null,"url":null,"abstract":"This paper presents the architecture and implementation of a full-custom 1.2 micron CMOS VLSI chip that executes a shared division/square root algorithm operating on mantissas (23-b in length) of single precision IEEE 754 std. floating point numbers. The division and square root algorithms used in this implementation are the radix 2 signed digit based digit-by-digit schemes. These two algorithms perform quotient/root digit selection using two most-significant digits of the partial remainder and are hence faster than other similar previously proposed radix 2 shared division/square root schemes. This chip runs at a clock rate of about 66 MHz at 5.0 V (from simulations) and requires 29 cycles per divide/square root operation from the time the operands are provided at its pin inputs.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A floating point radix 2 shared division/square root chip\",\"authors\":\"H. Srinivas, K. Parhi\",\"doi\":\"10.1109/ICCD.1995.528910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the architecture and implementation of a full-custom 1.2 micron CMOS VLSI chip that executes a shared division/square root algorithm operating on mantissas (23-b in length) of single precision IEEE 754 std. floating point numbers. The division and square root algorithms used in this implementation are the radix 2 signed digit based digit-by-digit schemes. These two algorithms perform quotient/root digit selection using two most-significant digits of the partial remainder and are hence faster than other similar previously proposed radix 2 shared division/square root schemes. This chip runs at a clock rate of about 66 MHz at 5.0 V (from simulations) and requires 29 cycles per divide/square root operation from the time the operands are provided at its pin inputs.\",\"PeriodicalId\":281907,\"journal\":{\"name\":\"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.1995.528910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A floating point radix 2 shared division/square root chip
This paper presents the architecture and implementation of a full-custom 1.2 micron CMOS VLSI chip that executes a shared division/square root algorithm operating on mantissas (23-b in length) of single precision IEEE 754 std. floating point numbers. The division and square root algorithms used in this implementation are the radix 2 signed digit based digit-by-digit schemes. These two algorithms perform quotient/root digit selection using two most-significant digits of the partial remainder and are hence faster than other similar previously proposed radix 2 shared division/square root schemes. This chip runs at a clock rate of about 66 MHz at 5.0 V (from simulations) and requires 29 cycles per divide/square root operation from the time the operands are provided at its pin inputs.