精馏塔蒸汽温度的非线性建模:PRBS和MPRS扰动信号的比较

N. Hambali, M. Taib, A. Yassin, M. Rahiman
{"title":"精馏塔蒸汽温度的非线性建模:PRBS和MPRS扰动信号的比较","authors":"N. Hambali, M. Taib, A. Yassin, M. Rahiman","doi":"10.1109/SPC.2018.8704132","DOIUrl":null,"url":null,"abstract":"Nowadays, countless research efforts have been reported for distillation column on nonlinear modelling. Several studies have shown the importance of appropriate perturbation signal for the nonlinear system applications. This study focuses on a nonlinear modelling for steam temperature using Pseudo Random Binary Signal (PRBS) and Multi-level Pseudo Random Sequence (MPRS) perturbation signals. A Binary Particle Swarm Optimisation (BPSO) algorithm was utilised in the model structure selection for polynomial Nonlinear Auto-Regressive with eXogenous (NARX) input for Steam Distillation Pilot Plant (SDPP). Three model’s selection criteria were examined; Akaike Information Criterion (AIC), Model Descriptor Length (MDL), and Final Prediction Error (FPE). The performance analysis included output model analysis and model validation of the nonlinear model. The results demonstrated fewer number of input and output lags and lesser amount of output model parameter using MPRS perturbation signal compared with PRBS. Model validation showed high R-squared and low MSE for both signals’ application.","PeriodicalId":432464,"journal":{"name":"2018 IEEE Conference on Systems, Process and Control (ICSPC)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Modelling for Steam Temperature of Distillation Column: A Comparison between PRBS and MPRS Perturbation Signals\",\"authors\":\"N. Hambali, M. Taib, A. Yassin, M. Rahiman\",\"doi\":\"10.1109/SPC.2018.8704132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, countless research efforts have been reported for distillation column on nonlinear modelling. Several studies have shown the importance of appropriate perturbation signal for the nonlinear system applications. This study focuses on a nonlinear modelling for steam temperature using Pseudo Random Binary Signal (PRBS) and Multi-level Pseudo Random Sequence (MPRS) perturbation signals. A Binary Particle Swarm Optimisation (BPSO) algorithm was utilised in the model structure selection for polynomial Nonlinear Auto-Regressive with eXogenous (NARX) input for Steam Distillation Pilot Plant (SDPP). Three model’s selection criteria were examined; Akaike Information Criterion (AIC), Model Descriptor Length (MDL), and Final Prediction Error (FPE). The performance analysis included output model analysis and model validation of the nonlinear model. The results demonstrated fewer number of input and output lags and lesser amount of output model parameter using MPRS perturbation signal compared with PRBS. Model validation showed high R-squared and low MSE for both signals’ application.\",\"PeriodicalId\":432464,\"journal\":{\"name\":\"2018 IEEE Conference on Systems, Process and Control (ICSPC)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Systems, Process and Control (ICSPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPC.2018.8704132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Systems, Process and Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2018.8704132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,关于精馏塔非线性建模的研究已见多不报。一些研究表明,适当的扰动信号对于非线性系统的应用具有重要意义。研究了基于伪随机二值信号(PRBS)和多级伪随机序列(MPRS)扰动信号的蒸汽温度非线性模型。针对蒸汽蒸馏中试装置(SDPP)的外源输入多项式非线性自回归模型,采用二元粒子群优化(BPSO)算法进行模型结构选择。考察了三种模型的选择标准;赤池信息准则(AIC)、模型描述符长度(MDL)和最终预测误差(FPE)。性能分析包括输出模型分析和非线性模型的模型验证。结果表明,与PRBS相比,MPRS摄动信号的输入和输出滞后数量更少,输出模型参数数量更少。模型验证表明,两种信号的应用均具有较高的r平方和较低的MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Modelling for Steam Temperature of Distillation Column: A Comparison between PRBS and MPRS Perturbation Signals
Nowadays, countless research efforts have been reported for distillation column on nonlinear modelling. Several studies have shown the importance of appropriate perturbation signal for the nonlinear system applications. This study focuses on a nonlinear modelling for steam temperature using Pseudo Random Binary Signal (PRBS) and Multi-level Pseudo Random Sequence (MPRS) perturbation signals. A Binary Particle Swarm Optimisation (BPSO) algorithm was utilised in the model structure selection for polynomial Nonlinear Auto-Regressive with eXogenous (NARX) input for Steam Distillation Pilot Plant (SDPP). Three model’s selection criteria were examined; Akaike Information Criterion (AIC), Model Descriptor Length (MDL), and Final Prediction Error (FPE). The performance analysis included output model analysis and model validation of the nonlinear model. The results demonstrated fewer number of input and output lags and lesser amount of output model parameter using MPRS perturbation signal compared with PRBS. Model validation showed high R-squared and low MSE for both signals’ application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Foot Arch on Plantar Distribution During Running A Comparative Study of Valve Stiction Compensation: Knocker Based Methods Design and Implement SumoBot for Classroom Teaching Vibration Control of a Nonlinear Double-Pendulum Overhead Crane Using Feedforward Command Shaping Mother Wavelet Selection for Control Valve Leakage Detection using Acoustic Emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1