{"title":"基于响应面法的面铣刀面铣削切削参数优化","authors":"N. H. Son, D. Trung","doi":"10.13189/ujme.2020.080301","DOIUrl":null,"url":null,"abstract":"This paper presents the optimization of cutting parameters when surface milling according to the stages of the response surface method. The implemented stages of the response surface method include the screening design, initial experiments and response surface design. The objective of the screening design is to select the input parameters for the next experimental stages. The goal of the initial experiments is to check the choice range of the input parameters ensures that the output function is extreme point or not. The aim of response surface design is to build the relationship between output parameters and the input parameters. The machined material in this study is C45 steel, while the used cutting tool is the face mill with PVD-coated inserts. Accordingly, the optimal values of cutting parameters including cutting speed, feed rate and depth of cut are determined at 230 (m/min), 0.23 (mm/toolpath) and 0.888 (mm), respectively. In case of machining with this cutting parameter, the surface roughness of workpiece reaches the smallest value, only about 0.15 µm.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Cutting Parameters When Surface Milling with Face Milling Tool According to the Stages of Response Surface Method\",\"authors\":\"N. H. Son, D. Trung\",\"doi\":\"10.13189/ujme.2020.080301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the optimization of cutting parameters when surface milling according to the stages of the response surface method. The implemented stages of the response surface method include the screening design, initial experiments and response surface design. The objective of the screening design is to select the input parameters for the next experimental stages. The goal of the initial experiments is to check the choice range of the input parameters ensures that the output function is extreme point or not. The aim of response surface design is to build the relationship between output parameters and the input parameters. The machined material in this study is C45 steel, while the used cutting tool is the face mill with PVD-coated inserts. Accordingly, the optimal values of cutting parameters including cutting speed, feed rate and depth of cut are determined at 230 (m/min), 0.23 (mm/toolpath) and 0.888 (mm), respectively. In case of machining with this cutting parameter, the surface roughness of workpiece reaches the smallest value, only about 0.15 µm.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujme.2020.080301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2020.080301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Cutting Parameters When Surface Milling with Face Milling Tool According to the Stages of Response Surface Method
This paper presents the optimization of cutting parameters when surface milling according to the stages of the response surface method. The implemented stages of the response surface method include the screening design, initial experiments and response surface design. The objective of the screening design is to select the input parameters for the next experimental stages. The goal of the initial experiments is to check the choice range of the input parameters ensures that the output function is extreme point or not. The aim of response surface design is to build the relationship between output parameters and the input parameters. The machined material in this study is C45 steel, while the used cutting tool is the face mill with PVD-coated inserts. Accordingly, the optimal values of cutting parameters including cutting speed, feed rate and depth of cut are determined at 230 (m/min), 0.23 (mm/toolpath) and 0.888 (mm), respectively. In case of machining with this cutting parameter, the surface roughness of workpiece reaches the smallest value, only about 0.15 µm.