基于i型渐进式混合截尾样本指数分布的应力-强度可靠性

M. Mirjalili, H. Torabi, H. Nadeb
{"title":"基于i型渐进式混合截尾样本指数分布的应力-强度可靠性","authors":"M. Mirjalili, H. Torabi, H. Nadeb","doi":"10.18869/ACADPUB.JSRI.13.1.5","DOIUrl":null,"url":null,"abstract":"This paper considers the estimation of the stress-strength parameter, say R, based on two independent Type-I progressively hybrid censored samples from exponential populations with different parameters. The maximum likelihood estimator and asymptotic confidence interval for R are obtained. Bayes estimator of R is also derived under the assumption of independent gamma priors. A Monte Carlo simulation study is used to evaluate the performance of maximum likelihood estimator, Bayes estimator and asymptotic confidence interval. Finally, a pair of real data sets is analyzed for illustrative purposes.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stress-strength Reliability of Exponential Distribution based on Type-I Progressively Hybrid Censored Samples\",\"authors\":\"M. Mirjalili, H. Torabi, H. Nadeb\",\"doi\":\"10.18869/ACADPUB.JSRI.13.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the estimation of the stress-strength parameter, say R, based on two independent Type-I progressively hybrid censored samples from exponential populations with different parameters. The maximum likelihood estimator and asymptotic confidence interval for R are obtained. Bayes estimator of R is also derived under the assumption of independent gamma priors. A Monte Carlo simulation study is used to evaluate the performance of maximum likelihood estimator, Bayes estimator and asymptotic confidence interval. Finally, a pair of real data sets is analyzed for illustrative purposes.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/ACADPUB.JSRI.13.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JSRI.13.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文考虑了应力强度参数R的估计,基于两个独立的i型渐进式混合截除样本,这些样本来自具有不同参数的指数总体。得到了R的极大似然估计量和渐近置信区间。在独立先验假设下,推导了R的Bayes估计量。通过蒙特卡罗模拟研究,对极大似然估计量、贝叶斯估计量和渐近置信区间的性能进行了评价。最后,为了说明问题,对一对真实数据集进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress-strength Reliability of Exponential Distribution based on Type-I Progressively Hybrid Censored Samples
This paper considers the estimation of the stress-strength parameter, say R, based on two independent Type-I progressively hybrid censored samples from exponential populations with different parameters. The maximum likelihood estimator and asymptotic confidence interval for R are obtained. Bayes estimator of R is also derived under the assumption of independent gamma priors. A Monte Carlo simulation study is used to evaluate the performance of maximum likelihood estimator, Bayes estimator and asymptotic confidence interval. Finally, a pair of real data sets is analyzed for illustrative purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Goodness of Fit Tests based on Information Criterion for Randomly Censored Data Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses Best Linear Predictors in a Stationary Second Order Autoregressive process by means of near and far observations A Note on the Identifiability of General Bayesian Gaussian Models Simulated Synthetic Population Projection Using an Extended Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1