{"title":"基于软计算的航空铝合金焊件参数优化设计","authors":"J. Jhang","doi":"10.1109/ICNC.2011.6022158","DOIUrl":null,"url":null,"abstract":"This research proposes an economic and effective experimental design method of multiple characteristics to deal with the parameter design problem with many continuous parameters and levels. It uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ANN (Artificial Neural Network) to train the optimal function framework of parameter design. It combines SC (Soft Computing) of SA (Simulated Anneal) and GA (Genetic Algorithm) to search the optimal parameters combination for the optimal parameter of aerospace aluminum alloy weldment. To improve previous experimental methods for multiple characteristics, this research method employs SA to search the optimal parameter such that the potential parameter can be evaluated more completely and objectively. Additionally, the model can learn the relationship between the welding parameters and the quality responses of different aluminum alloy materials to facilitate the future applications in the decision-making of parameter settings for automatic welding equipment. The research results can be presented to the industries as a reference, and improve the product quality and welding efficiency to relevant welding industries.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"23 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The optimal parameter design of aerospace aluminum alloy weldment via soft computing\",\"authors\":\"J. Jhang\",\"doi\":\"10.1109/ICNC.2011.6022158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes an economic and effective experimental design method of multiple characteristics to deal with the parameter design problem with many continuous parameters and levels. It uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ANN (Artificial Neural Network) to train the optimal function framework of parameter design. It combines SC (Soft Computing) of SA (Simulated Anneal) and GA (Genetic Algorithm) to search the optimal parameters combination for the optimal parameter of aerospace aluminum alloy weldment. To improve previous experimental methods for multiple characteristics, this research method employs SA to search the optimal parameter such that the potential parameter can be evaluated more completely and objectively. Additionally, the model can learn the relationship between the welding parameters and the quality responses of different aluminum alloy materials to facilitate the future applications in the decision-making of parameter settings for automatic welding equipment. The research results can be presented to the industries as a reference, and improve the product quality and welding efficiency to relevant welding industries.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"23 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本研究提出了一种经济有效的多特征试验设计方法,以解决具有多连续参数和水平的参数设计问题。利用TOPSIS (Order Preference Technique of Similarity to Ideal Solution)和ANN (Artificial Neural Network)训练参数设计的最优函数框架。将模拟退火软计算与遗传算法相结合,搜索航空铝合金焊件最优参数组合。为了改进以往的多特性实验方法,本研究方法采用SA来搜索最优参数,从而更全面、客观地评价潜在参数。此外,该模型还可以学习到不同铝合金材料的焊接参数与质量响应之间的关系,便于今后在自动焊接设备参数设置决策中的应用。研究成果可供相关行业参考,提高相关焊接行业的产品质量和焊接效率。
The optimal parameter design of aerospace aluminum alloy weldment via soft computing
This research proposes an economic and effective experimental design method of multiple characteristics to deal with the parameter design problem with many continuous parameters and levels. It uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ANN (Artificial Neural Network) to train the optimal function framework of parameter design. It combines SC (Soft Computing) of SA (Simulated Anneal) and GA (Genetic Algorithm) to search the optimal parameters combination for the optimal parameter of aerospace aluminum alloy weldment. To improve previous experimental methods for multiple characteristics, this research method employs SA to search the optimal parameter such that the potential parameter can be evaluated more completely and objectively. Additionally, the model can learn the relationship between the welding parameters and the quality responses of different aluminum alloy materials to facilitate the future applications in the decision-making of parameter settings for automatic welding equipment. The research results can be presented to the industries as a reference, and improve the product quality and welding efficiency to relevant welding industries.