因果关系诱导的分布式时空特征提取

Duxin Chen, Wenwu Yu, Qi Shao, Xiaolu Liu
{"title":"因果关系诱导的分布式时空特征提取","authors":"Duxin Chen, Wenwu Yu, Qi Shao, Xiaolu Liu","doi":"10.1109/ICCSS53909.2021.9722007","DOIUrl":null,"url":null,"abstract":"Various real world data contains complex coupling spatio-temporal information, which brings a huge challenge for prediction, especially long-term prediction. Therefore, in this study, we propose a causality induced spatiotemporal feature extraction method and a novel deep learning framework for long-term strongly coupling data prediction tasks, which can effectively extract long-term spatio-temporal dependence of the time series data through causal network, geographic network and multiple time extraction mechanism. The proposed algorithm has achieved outstanding prediction performance in the widely- used test data set of traffic flow, where the long-term prediction accuracy of is nearly 30% better than other state-of-the-art currently-used spatio-temporal prediction models.","PeriodicalId":435816,"journal":{"name":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causality Induced Distributed Spatio-temporal Feature Extraction\",\"authors\":\"Duxin Chen, Wenwu Yu, Qi Shao, Xiaolu Liu\",\"doi\":\"10.1109/ICCSS53909.2021.9722007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various real world data contains complex coupling spatio-temporal information, which brings a huge challenge for prediction, especially long-term prediction. Therefore, in this study, we propose a causality induced spatiotemporal feature extraction method and a novel deep learning framework for long-term strongly coupling data prediction tasks, which can effectively extract long-term spatio-temporal dependence of the time series data through causal network, geographic network and multiple time extraction mechanism. The proposed algorithm has achieved outstanding prediction performance in the widely- used test data set of traffic flow, where the long-term prediction accuracy of is nearly 30% better than other state-of-the-art currently-used spatio-temporal prediction models.\",\"PeriodicalId\":435816,\"journal\":{\"name\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS53909.2021.9722007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS53909.2021.9722007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种真实世界数据中包含着复杂的时空耦合信息,这给预测尤其是长期预测带来了巨大的挑战。因此,在本研究中,我们针对长期强耦合数据预测任务,提出了一种因果关系诱导的时空特征提取方法和一种新的深度学习框架,通过因果网络、地理网络和多时间提取机制有效提取时间序列数据的长期时空依赖性。该算法在应用广泛的交通流测试数据集上取得了优异的预测性能,其长期预测精度比目前使用的其他最先进的时空预测模型提高了近30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causality Induced Distributed Spatio-temporal Feature Extraction
Various real world data contains complex coupling spatio-temporal information, which brings a huge challenge for prediction, especially long-term prediction. Therefore, in this study, we propose a causality induced spatiotemporal feature extraction method and a novel deep learning framework for long-term strongly coupling data prediction tasks, which can effectively extract long-term spatio-temporal dependence of the time series data through causal network, geographic network and multiple time extraction mechanism. The proposed algorithm has achieved outstanding prediction performance in the widely- used test data set of traffic flow, where the long-term prediction accuracy of is nearly 30% better than other state-of-the-art currently-used spatio-temporal prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Prediction Model of Key Personnel's Food Crime Based on Stacking Model Fusion A Multidimensional System Architecture Oriented to the Data Space of Manufacturing Enterprises Semi-Supervised Deep Clustering with Soft Membership Affinity Moving Target Shooting Control Policy Based on Deep Reinforcement Learning Prediction of ship fuel consumption based on Elastic network regression model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1